AD-A132 244 UTILIZATION OF ADA AS A PROGRAM DESIGN LANGUARGE(U) " 172

gﬂ:ﬂgzPUSTGRHDUHTE SCHOOL MONTEREY CA G J WYLIE ET AL.
U
UNCLASSIFIED F/G 9/2 NL

— N— ——— —" — e p—

el

A B oo |
= YN
S SO PRI RN TR Sy B

-

N T

-
LWL}

Nl Q
SO ol o~
= =

MEEE

wy| O Of ~g - 4
BADD39443

=

I

£

16

I

14

e
e =
——
—

il

125

e ——
c————

I

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

ﬁ‘-‘- -

ADA1 32244

...........

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

by
Gecrge J. Wylie
and

Thcmas R, Watt

UTILIZATION OF ADA AS A PROCRAM DESIGN LANGUAGE

,
]
b June 1983
g
3 O
EE; Thesis Advisor: Ronald Modes
1
- Approved for public release, distribution unlimited
.
(WIS
[M) {%f\ '
=

Lle,

| 3

T T T e W T W W T e T :—--—--]

SECURITY CLASSIFICATION OF THIS PAGE ("hen Daca Entered) ".1
READ INSTRUCTIONS 4
REPORT mMENTAT|0N PAGE BEFORE COMPLETING FORM ';
NUM 2. GOVT ACCESSION NO.! 3. RECIPIENT’S CATALOG NUMBER
A1222YY
4. TITLE (and Subtttle) S. TYPE OF REPORT & PERIOD COVERED
Utilization of Ada as a Program Design Language |Master's Thesis
June 1983

8. PERFORMING ORG. REPORT NUMBER

R
7. AUTHOR(e) 8. CONTRACT OR GRANT NUMBER(a)

George J. Wylie and Thomas R. Watt

9. PERFORMING DRGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT TASK
AREA & WORK UNIT NUMBER

Naval Postgraduate School
Monterey, California 93940

11. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT DATE

Naval Postgraduate School Iune 1983

o o & 3. (4
Monterey, California 93940 11";" RS TS

{73 MONITORING AGENCY NAME & ADORESS(t! dtfferent trom Controtting Ottice) 18. SECURITY CLASS. (ot thia report)

18e. E LA SIFICATIDN/ DOWNGRADING

EDU
6. OISTRIGUTION STATEMENT (ol thte Repert)
Approved for public release, distribution unlimited
L ol
17. DISTRIBUTION STATEMENT (of the sbetrect entered In Block 20, II ditlerent from Report) -_:
e ,.:;
g
T6. SUPPLEMENTARY NOTLS iy 'J
L=
9. KLY WORDS (Centinue on reveras slde Il necessary and identtly by bfock number) A |
Ada, PDL, SDL, Software Engineering Sy |
|
@
3
20. ABSTRACY (Centtnue on reverse oide tf necessary and Identily by block number)] &=
In terms of manpower, time and money, the single largest investment that must
.be made in the acquisition and maintenance of a large and complex computer e
system is the investment made in software. In response to this situation, ths RN
DOD began an intensive and comprefiensive research and development effort in an .]
attempt to reduce, if not eliminate the inherent problems associated with 5 |
software system design. The end result of this effort was the creation of i
the Ada programming language. This thesis will examine the development I
H
yants 1473 xoimion or 1 vV 3 13 ossOLETE !
$/N 0102- LF-014- 6601 1 g cTUmTY CCASHPICATION GF 7RIS PAGE Whon Deia Frterec T

» AP
o o < = * . 5
= TN R TS ST TSN EIRE N TS g P NP Sty N Ry NN GG ST DO SO SO SN M. DU, N) A LI SR WS NN NGB W50 Wi UL S WY W WL JDE W R SN G N0 SRy e 2 LL&AL“'LA—A__A"J

TR P Iy P S e Cha Jad s ghe ek Sl Y T - W——— WY Y T T Yy
A G e s 1 A e e ey i 8 & R . . e . i

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

BLOCK 20: ABSTRACT (Continued)

of the language, focusing attenticn on the concepts and features which make
Ada a potential '"software crisis" solution, These concepts and features
will be further examined as to the extent to which they support the utiliza-
tion of Ada as a program design language (PDL).

Accession For

NTIS GRA&I w |
0

DTIC TAB
Unannounced (|
Justification |

. BY
._Di_g,_tr_-ibution/_ .
Availability Codes
Avail and/or
Dist Special

I SN 0102 LF- 0146601 2

SECURITY CLASSIFICATION OF THIS PAGE(When Deta Entered)

a'..‘

T
44 &
v S!L._."' adl adt “é .'.‘...I, ,./

; .
K]
. [y
ach e dda ‘ania o o o

o i ofs o .o
Bear =~ lang 2 8
JPPPT WP TP U S 195 3

U S0
. e e
» 't .

P

4
.9

e

PRV TG0 TR I

S
. 1%
. g
v
ks

{ .
4
K. SRR

[7

e S

AR Tl T Sl T S S5 B - e B T
T Tgreur . veowvy S L B A s S i i s ST e kB D et s

.....

n. . 0 B .

Approved for public release, distribution unlimited
Utilization of Ada as a Program Design Language
by

George J. Wylie
Lieutenant Commander, United States Navy
B.A., University of Washington, 1971
and
Thomas R. Watt

Lieutenant, United States Navy
B.A., Syracuse University, 1973

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL

June 1983
Author: V(Q’D\qe, Q c\/'\)lek-ﬂ-
1) Al 1
P J T
¥ RS -
/
_)— ’7 L
Approved by: iy /15i;é:;
s . I Thesis Adviser
! ~{
i -t

Second Reader

n, Depdrtment Administrative Sciences

e AT M N

Dean of Informatégg:éii Policy Sciences
3

2, L - ool K Iy gy} A -‘ -
ol e YO WUR NP U, S NPT N A

) .
s

ettty

ey Aagoan dasle

!

g o:
'@

i

o of
ATRY RV
Gl

o« e
R
¥ -'l

2
4 .I'
a9

»
.

1 iy

v ll ¥
’A...,.Jg " b,; eialelag "_{.

€
.

s NCOR LRSS < B s

8 3 o i on gu PRpt 6 R

v
.

e v

R B AR MRS - I N

-
o 3

.

vrTYsw
F s

b SR - §

i A e PR A H a ooiman B e i ENE e e e B e UL —

ABSTRACT

In terms of manpower, time and money, the single largest
investment that must be made in the acgquisition and
maintenance of a large and complex computer system is the
investment made in software. In response to this situation,
the DOD began an intensive and comprehensive research and
development effort in an attempt to reduce, if not eliminate
the inherant problems associated with software system design.
Tne end result of this effort was the creation of tae Ada
programming language. This thesis will examine the
development of the language, focusing attention on the
concepts and features which make Ada a potential "software
crisis" solution. These concepts and features will be
further examined as to the extent to which théy support the

utilization of Ada as a program design language, (PDL).

d

e TS L SO ST WY W AP PN TSR DU PR T A s PRV S Y - = T i

[
0 'J!LJ‘L!'

e

. S) o e i
. 5 s 2

PUFLS TR
PEPTOR PR OO ey PN

ot

o g

II.

INTRODUCTION:

OF ADA

A,

B.

C.

D.

E.

F.

BACKGROUND:

TABLE OF CONTENTS

BRIEF HISTORY OF THE DEVELOPMENT

THE SOFTWARE CRISIS

THE HIGH ORDER LANGUAGE WORKING GROUP

THE NEED FOR A SINGLE PROGRAMMING LANGUAGE

THE ADA PROGRAMMING SUPPORT ENVIRONMENT

EDUCATION IN THE ADA LANGUAGE ..

ADA 3AS A

"SOLUTION" TO THE SOFTWARE CRISIS

SOFTWARE ENGINEERING CONCEPTS UTILIZED IN THE

DEVELOPMENT OF ADA

A.

THE GOALS OF SOFTWARE ENGINEERING

B

Modifiability

Efficiency ...

Reliability sccceee..

Understandability
PRINCIPLES OF SOFTWARE ENGINEERING

Abstraction

Information Hiding ..

Modularity ...

Localization ..

Uniformity ...

Completeness .

Confirmability ..cec..

TR SR WP W T L

P T, . VESE UG- G, G S YN WPy

L e s o 2 o e s

10
14
it}

24

25
26
2
2
28
29
30
30
31
32
33
34
35
35

a2 B B

. 0
v Lo e dr
L B - alloaloaloald ot b aba

- it

Y

1 WL s

Bk

b b A e s LS ARt B e Roeat St 2o S Wy - 5 5 -
- = e ; . & - .- - . . B o S ————" Sl

3 C. SOFTWARE DEVELOPMENT DESIGN METHODOLOGIES 36

' 1. Top Down Structured Designcce0eceeeee 36 !

] 2. Data Structure Design ...eecececcssvecaseas 37

N
Soambgut utonta bt

3. Parnas Decomposition Criterioncec.. 37

' 4. Object oriented Design ® & &6 & & 6 5 0 s 0 s " 00 s s e 38 ”

DS R

[D. THE USE OF PROGRAMMING LANGUAGES AS SOFTWARE
¥ DEVELOPMENT TOOLS ® & & & & 5 S 2 0 s S S 20 S S S sSSP 39

l III. SURVEY OF CURRENTLY DEVELOPING PROGRAM
DESIGNLANGUAGES ® & 8 0 & 5 5 0 0 0 % 0 S 2" S S O S S S S S S S e s s e e 43

A. PROGRAM DESIGN LANGUAGE CONCEPTS .¢¢eceescesses 43

B. SURVEY OF CONTEMPORARY PDLS ¢e.cecceescescccsss 50

| VENSUUIARRSTTT .. S

' 1. Harris PDL ..cvccivncnnnnntnnccsonncsnnccans =Y
&9 ITRIGLEBIA" 3a ol RRa oy SRy s desd S Wi ah ohw o 52
Bo 0Bl 6 000000000000000 00900000000 00000C o D
I 4. Norden PDL ...cieevecnennn C0000G0000C00QAC o 53
3 iv. EXAMINATION OF ADA CONCEPTS «.cceseecccnocoseseseass 55

A. BACKGROUND ® ® 0 5 0 5 0 0 % 0 0 0% 50 0000 0SS L NG LSS S S 0 55

B. LANGUAGE OVERVIEW e & 8 6 6 & 5 2 0 6 O % 5SS S S S S eSS e 0o 56
4 C. OBJECT ORIENTED DESIGNccevvecnccensecsnsss 56

1. Befine the Problem «..ccescessccssssssesesns 59

:
k
:
!

2. Develop an Informal Strategy ..cceeeeseesees 59

3. Pormalize the Strategy ..ccceceessscesessess 60

Balan St oy

D. ADA LANGUAGE TOOLS ® % 0 ¢ 0 & o 00 0 0 0L Ot O S0 LS e e O e e e 62

o oo

1. SUBDECYEIMME ...:.c00cos50vvsevsovsscnnsssss 03

2. TaSkS LR B SR I I S I I R I I S I O I I A S I S SN SN S 64

* 3. Packages © 6 506 0 56 0 60 8 00 0 0 00 0 00000000000t s 65

—_—
i d
atraieadiad gty s IR g e

| TSR 4

[SO W 3 il LA, BV, LD W B I 3 e PP P L 1 ol it Lon da Bsinhes o,

- SUSY SO (Y S ARSI JSOr S NP Y

E.

F.

G.

H.

I.

DATATYPING ® 8 5 0 9 5 8 5 P 5 S PO ST O L LSNPS S S LN NS NS00 e 67

GENERIC PRmRAM UNITS @ & & ¢ 5 5 2 0 0 2 2 0 0 0 2t 6T E T e 9 L] 68

HNEUEACHRELIEN S 50s o P2 o Elehshalal s 3 =)o sns = susl sners lois [shonsl d [heie o 69

DOCUMENTATION ¢ ¢ 9 0 9 5 0 0 0 0 8 0 0L 000 LSS TE eSS 70

EERESCHEE E TSSITESE S S0 o ot L S S e bl sk s

UTILIZATION OF ADA AS A PROGRAM DESIGN LANGUAGE ... 72

A.

B.

c.

PRESENT UNDERLYING PROBLEMS ...ccccccecccceccees 712

AN EXAMPLE OF PDL/ADA IN PROGRAM DEVELOPMENT .. 73

MANAGEMENT ISSUES .cccsecsccccssscssscancs ceeeve 16

l.

The Need for Education o1 B o o S e ces 17
The Need for Standardization .cceceecseceeese 13

The Need for Horizontal Vice Vertical
Design ® ® ® & & 9 O ¢ 0 & 5 5 5 5 S 2 0 2 S S O 8PS 880 0N 20 79

4. The Need for Support of Software

Debinclipiie’st Sk oer. 550 0'0 0 0'0'0 0 0 BI6 0 oolola G ooa oo 0D IH

D. LANGUAGE DESIGN ISSUES .tcececccesscscccsacecnscsas 83

1. An aAda PDL Should be Applicaticns

Flexible * 8 0 & ¢ 5 0 5 9 0 20 2P NN PSSP P e e s e e oo 84
2. An Ada PDL Should Not Subset the Ada

EANGUEGE: §. o onc s ot sovie e st 8.8 sl ofefs ok 5% 40 oss o - 8D
3. An Ada PDL Should Include English

NEVRIBERSSINADEY b 0. 0'010/0 0K 010 OO T 0K b ood SOOI E 0 0 dio d i
4. An Ada PDL Should Allow Annotations 87
5. An Ada PDL Should be Supported by

Automated Tools @ ® © © ¢ ¢ & 5 5 20 S 2 8 B S S S S T SN S P SO 88
6. An Ada PDL Shculd be Well Documented 90

7

e

tenlactem—a A

.'.l
Asbha. Ansa

3 .
tatlailecimem K a'sasanasial

A §

ety

4 . .
DRSNS S - TR T I

3 -
sl alalaladaiac sk e

iR

i
POUY WP LI

b v
[(BTN ‘.‘.B u.A..A’_.A_.A‘..AZ.A_Q ASlatoscnad

..................

VI. CONCLUSIONS AND RECOMMENDATIONS «¢uecececcosccscsess 92

I A. CONCLUSIONS .cctcecsssccccsassccssossscsasasccscscs 92
B. RECOMMENDATIONS FOR FOLLOW-ON WORK ..c.coece... 93
APPENDIX A: GLOSSARY .cccccvconcarsnccccoasascscscsacsccces I4
APPENDIX B: ACRONYMS AND ABBREVIATIONS ...ccceceecesssss 104
APPENDIX C: PDL VS. ADA COMPARISON .cccccecescsccsesssss 105
LIST G REBERSBINCHESL . . . oo cos ooreraos s e ops g2l o orsre e sronsne swore LO.S

INITIAL DISTRIBUTION LIST ® & & 8 & 4 4 6 0 & 00 & 4 00 0 s s SO S0 s s 00 0o llo

U L S SEPL I DR AP Sy e S = - —— A e a - e - -l

VBTN

(LN SIS

- PP

B - .
Aod o B R A3 dbentonlon’on

chalcio bl Fooriaar

e T

LA 1o ATV

‘

Laid—=s

RORERON - Ay .

OO A S e i S S e AN Sl e sl Bl et Rl b i are s je et et et e S e b e e e g LSS i G — - - v - —
- L 9 E ? ¥ ¥ o

I. INTRODUCTION: BRIEF HISTORY OF THE DEVELOPMENT CF ADA

A. BACKGROUND: THE SOFTWARE CRISIS

In terms of manpower, time and money, the single largest
investment that must be made in the acguisition and
maintenance of a large and complex computer system is the
investment made in software. During the last thirty years
the cost per executed instruction of computer hardwar= nas
declined by a factor of two every two tO three years; while
the relative cost of software has increased dramatically,
from under 20% of total computing costs in 1960 %o cover 30%
of those costs in 1980. The increasing ratio of softwarz to
nardware costs is most acutely demonstrated in compiex
embedded computer systems davalcped IZor and used
Department of Defense. 1In 1973 over 50% of the DOD's total
software expenditures were dedicated to embedded systems, and
today that figure is significantly higher. Coupled with this
is the fact that complex embedded software projects have
frequently experienced substantial cost and schedule overruns
and have sometimes had to be abtandoned altogether because
their sheer complexity resulted in project attempts which
became altogether unmanageable [Ref. 1l: p. 6].

The term "software crisis" was coined in the late sixties
to describe what was becoming a wholly untenable situation.

Thousands of programmers and analysts using hundreds of

e o L SR EL DR SR NP ORI S 7 . S W . W - - e« laia

‘L.’.L!l. SO A R

(PPN)

-

’.L
Py 2

Oy

i i b gt
YO WA (B W W WY B0 P -Y Y SR

o
Y 9

R TR b WD

e

T

s 0’a

[P IJII

[H W e

languages £f£or use on hundreds of computers with untold
variations in applications resulted in an overall software
picture within DCD that was simdly beyond comprehension, let
alone management. In response to this situation, the DOD
began in 1975 what was to become one of the most
comprehensive and forward looking programs in the history of
software engineering--the development of the Ada language
[Ref. 2].

Prior to 1975 it was realized within DOD that one of the
greatest problems afflicting he management and use of

L20 many

g
[g
(25

computer softwar2 was tha:t thera wer2 sim
different software languages in use (roughly 400, couanting
all languages and dialzcts in use at that time). The great
diversity of languages in use, coupled with the wide variasty
of applications requirad by DOD embedded software systams,
resulted in the fact that portability of software between
systems was in most cases impossible. Additionally, since
DOD embedded systems t=nded to be verv complex, each system
tended to become an island unto itself r=garding the svstem's
acquisition, maintenance and personnel support resulting in
the need for specialized tools and personnel training for

each systenm.

B. THE HIGH ORDER LANGUAGE WORKING GROUP

The multiple language problem begged as its logical

panacea the formulation or adoption of a single software

10

- . s P a e o T DR IS IR U DS DN R A S SN W W W T o G, W W W T I TN W S S

R i R e e e s i o B e e e e e e T R —.-———,—1
& : . 5 . v

e e fge e [e

It it e

-
O PTT Y

L

-
A

P ORI N

sttt b

s aca OF Lo,

.
L)

JOUN s

- a

Safnn s g

el

LL‘AIIH_L:‘;"v

[T

S Bt e e e e e e —— Vg

langugge which could be utilized on all embedded svstem
software applications. The DOD reasoned that if a universzal
language could be adopted, substantial gains in the control
over such problems as non-portabilitv, extensive maintenance
and programmer training expenditures, and software
understandability could be achieved. To address the problem
of multiple lanrguages, as well as to attempt a reasonable
solution to that problem, the High Order Language Working
Group (HOLWG) was formed in 1975 with representatives from
the Army, Navy, Air Force, Marines and other Defense

1

agencies. Tae HOLWG's charter was to exp

iy

37

-

ore and i1denti
Dicg LIS T 48

}._J

the DOD's requirements for computer programming languages,
evaluata existing languages then being used by the DOD, and
finally to recommend the implementation and control of a
"minimal set" of languages for use throughout the DOD.
During 1975 and 1976, HOLWG undertcok an extensive require-
ments analysis process in accordance with its charter,
beginning with the publication of STRAWMAN, which was essen-
tially a questionnaire with which to stimulate comments from
the field. 1In August of 1975 the WOODENMAN document was
written which summarized the comments and recommendations
received through STRAWMAN. Further solicitation of comments
from worldwide sources followed, and the results were again

analyzed, leading up to the publication of TINMAN, which was

11

i A i e B B B

R aad e i-oie-o pre - |
L)

= L

/A

- |
Raal e Slastans

-~

L.A..J..A-‘-l-.

-
Aaatend 80 S

.2

T

- .
Aaddt il A gy

RO RT RS A S

il

o A'JIA 5o

| AT T I

T——— o —r T r—r— T T =
. A e R ™y T P Tk S BT AT i e 3 P b e T S b e
4
s

a complete set of requirements for the intended univarsal i
language. E

The research up to this point had revealed that though i
the differences in embedded system software applications were .
substantial, the programming language regquirements for a
broad spectrum of those applications were remarkably similar.
It was, for instance, clear that for all applications, such
programming methodology attributes as top-down design,
structured programming and information hiding were desirable
features to utilize as these features enhanced management's

apility to improve programmer producitivity, system

[{(U

reliability and overall system control. In addition these
features were seen as essential toward making vossible the
development of advanced programming tools with the potential
to significantly improve the productivity of DOD software
engineers.

The publication of TINMAN in January of 1976 was followed

%
"e
N
e
e

by an intensive examination of existing languages, and a

=

formal evaluation of *those languages against the requirements

R - B

spelled out in TINMAN. As might be expected, no single ,
;: existing language was found acceptable as meeting those ﬁ
o requirements. The primary reason for this is that each '
&
-~)
E. language was irretrievably entangled within the application 3
] 3
o it supported, and in most cases the different languages and '
g
2 4
. y
! :
g .
k! 12 1
i': ;
- 2
{.4‘
y
E'.-;f-e e Sas s, Sttt bishos v S LA = 2 USSP i - a i

- N

-
r
..-

R SR R .“.‘ S S B e R A T A e A T S it i i A A e o

dialects were initially designed for a specific application,
and only later applied to a broader applications base.
Although no existing language was recognized as Dbeing
capable of adoption as a universal DOD computer language, the
HOLWG did recognize an immediate need to stop the prolifera-
tion of newer, though technically similar languages in the
acquisition and maintenance of embedded system software pro-
jects. In April of 1976 the DOD released Directive 5000.29,
which restricted all projects to "DOD approved high order
programming languages" unless cost effectiveness or technical
practicality was significantly impaired over the system's
life cvcle in complying with that directive. More specifi-
city was offerad by DOD Directive 5000.31 in November, 1976,
in that this Adirective specifically listed the languages
authorized for use .by the DOD. Those languages are FORTRAN
and COBOL (DOD), TACPOL (Army), CMS-2 and SPL/1 (Navy), and
JOVIAL (Air Force). The issuance of these directives was
intended only as an interim measure rather than a long term
solution to the underlying problem of too many embedded
system computer languages, and as such the directives served
only to thwart the development of additional and assumably
unnecessary new programming languages. Given that a consider-
able amount of investment had already taken place in these
approved languages, there was little immediate need to

replace them in their present applications.

13

AN Be 4.0 _*

|
3
i
9
e

| i |
G L
o telte

1

Loua s
Al
.

— Agvr'r'.j' vy
o i P

'
JHOACAD b

T T T W T T WY
o o .

C. THE NEED FOR A SINGLE PROGRAMMING LANGUAGE

But the basic questions still remained: was it feasible
to develop a universal language, and of the many languages in
use both within and outside the DOD , which if any language
would best serve as a model to emulate in the development of
a new language. In answering the first question the DOD
performed two independent cost benefit analyses, both cf
which concluded that it was appropriate to undertake the
development of a new universal language which fully met the
TINMAN requirements. The ultimate benefits possible from such
an undertaking would most likely range in the hundreds of
millions of dollars in personnel training savings, and
savings realized through greater use of compilers and other
software tools. Toward an answer to the second question, the
HOLWG was tasked with executing the development of a commcn
language, while program management responsibility rested with
the Defense Advanced Research Projects Agency (DARPA). The
criteria imposed on the HOLWG were that it develop a
language commensurate with state-of-the-art technology and
design methodologies and that it develop a language of high
enough quality so as to be attractive to interests outside
the defense industry, including (it was hoped) industry,
universities, foreign vendors and NATO allies.

In January, 1977, the IRONMAN document was published as a

requirements definition for the new common language, and this

14

it Bl e B o B de i s G R 2o T TN TR TR T, T T e ey,

:
j
i

U IR

LY -)

FBPRPRPRTRD .8 LR ST

i

TEIED i RO P AT LRS L) - DL A \]

S Ao

b tatad

Ty T T IR T et

O : §ThlALATACROMN) ~ 4 SIS
RO ¢ § S ROM N~ 4

-

=x

---------- T —
Er T . P O e e o R e R i b e e s e ol o ———————————

document served as the criterion for an international
competition against the Request For Proposal issued in April
of that year. Seventeen vendors responded to the RFP, from
which four were selected to proceed with further design. All
four vendors indicated an intention to use the programming
language PASCAL as a starting point in their respective
development efforts. Preliminary design efforts were to be
measured against the REVISED IRONMAN requirements definition
document, which was released in July of 1977. Evaluation of
the preliminary designs was accomplished by distributing the
preliminary designs among approximately eight DOD and non-DOD
evaluation teams from the United States, Europe ané the
United Xingdom. This Phase 1 evaluation resultzd in the
selection of £twoe of the £four vendors for continusd
development, and in June of 1978 the final requirements
document, STEELMAN, was issued. In March of 1979 the final
designs were issued from the two competing vendors, CII-
Honeywell Bull and Intermetrics.

Again the proposed designs were distributed among
evaluation teams around the world for comment, and software
engineers from many disciplines were invited to meet with and
question the designers to better understand their design
rationale. The results of these meetings, the comments

received from the evaluation teams, and an intensive analysis

15

- e A Yy " » S i .
L--.--‘n;n;n;lugl‘-nx--htv!;i'--* dadm e st oaloa e a®oat o, 2

1

NS PR b SIS DO -) VEICSILAURONS . SOMORIATIRT —) LRSI

“‘-‘-.L‘.“.E‘.

l' CR I
. d g
e 1et

[}
.

s R A
B B
e -n

by the different DOD interests resulted in the selection of

CII-Honeywell Bull in April of 1979.

Up to this time no official name had been given the new
language, though the industry press had unofficially dubbed
the name DOD-1l. HOLWG objected to the inclusion of any
reference to the Department of Defense in naming the new
language, as such reference could have the effect of
discouraging acceptance and use of the language in the non-

military marketplace, and one essential objective of HOLWG
was to specifically enhance the possibility of acceptance in
that marketplace. The language name Ada was adopted in the
Spring of 1979 in honor of Agusta Ada Byron, famous in her
role as the first "computer" programmer.

In June of 1978 the SANDMAN document was issued, which
addressed the need to develop an integrated system of
software development and maintenance tools along with
development of the language itself. HOLWG reasoned that
though no special environment would be needed to use Ada, the

acceptance of the 1language and the potential benefits
possible from the development of the language could be
greatly enhanced with the implementation of a standardized
programming environment. SANDMAN was reviewed as to its
intent and possible alternatives at a workshop jointly
Navy and University of

sponsored by the Army, Air Force,

California at Irvine in late June, and this workshop resulted

16

el fndn iomdoa al ol -

.
-
=
v
.
L

Y - TR

PN e B R P

| ARDNOPLN

............. A o oy —r
--------------- g ——— e o g il b i —=

TTTTTYYY
CRRBOE ey

in the preliminary draft statement of Ada environmental
requirements, PEBBLEMAN, in July, 1978. This document
described all aspects of the Ada environment, including
language standards, policy, configuration control, compiler
validation and software and management tools. After wide

dissemination for comments as to its contents, PEBBLEMAN was

pa—
»
'.4
3]
4
1
=
3
a
M
-
J
{
!

revised in January, 1979, to reflect the concerns mentioned

by those submitting comments.

D. THE ADA PROGRAMMING SUPPORT ENVIRONMENT

A set of technical reguirements for what was designated

the Ada Program Support Environment (APSE) was published and

distributed in November, 1979, as Preliminary STONEMAN, along

with invitations to selected interests to attend an APSE
workshop on 27-29 November, 1979, in San Diego. At tnis
workshop, two hundred and twenty (220) industrial, research,
academic and government participants contributed opinions and
recommendations as to the APSE, and the results of the
workshop were reflected in the final STONEMAN document which
was published in February 1980. The STONEMAN requirements
document delineated the structure and content of necessary
elements to an embedded Ada system, including the support

system of the host machine and the run-time system on the

target machine. Considerable emptasis in STONEMAN is placed
on the standardization and coordination of a well defined set

of tools and uniform interfaces within the APSE to enhance

e L

17

o FeOU RO A5 S SOV WP W S WA G-I Y - . - J

ARG Bach ot Baried Bre dnie B A T T Jt=i A A i ot Tt B o e e o e oo e e it e

Ada programming support .prroughout its life cycla. 3uch
uniform conventions, with Ada used to implement the APSE, ;
would also enhance such desirble system attributes as
portability, modularity, uniformability and understand-
ability. In addition to the APSE, STONEMAN delineated the)
Kernel Ada Programming Support Environment (KAPSE) to ensure

standardization of the environment made available to the APSE

(and therefore ensure APSE portability) in the evenft more
than one APSE evolved. STONEMAN also defined a Minimal Ada
Program Support Environment (MAPSE) as a minimum set of
functions which an APSE should periorm. As defined by thxe
MAPSE, the minimal APSE should be able tc create database
obiects, vroduce new objects which are records of analvsis of
other obiects, transform objects from one representation to
another, support object display, parse, link, load and
execute.

In addition to development of the Ada language and the
support environment within which it will reside, the DOD is
encouraging and funding the development of compilers to

interface the Ada language with the intended object machines

Ao e, e STEREy TR e | BT ST S RS S s g N LN RN T e

on which the language code will be processed. Individual

efforts are being made by each of the DOD branches so as to i

JISE &

best match branch (Army, Navy, Air Force) needs with the

womsm

overall development of the Ada language. Perhaps more

importantly, the DOD wants to encourage the use of Ada for

PR

18

wlotalll 2as ot

o
oo

Lot 5 -i,-r',

YT

- g
PR d
.

2 0 O

g
l.-
T

B S P T TR i S e R e e e AR T T T o e N e S o T W T W T

exploratory development and advanced development projects
even before the military service and accredited industry
production quality compilers are available. As an example,
the Defense Advanced Research Projects Agency (DARPA) €funded
Intermetrics Corporation (the vendor eliminated during the
Phase 2 language development vendor selection prccess) toO
develop a test compiler to run on the DEC-20, using the test
translator it had developed during the Phase 2 language
design effort. Though the formal intent (and investment) of
the DOD is to develop compilers and other tools which will

serve the needs of the developers and maintainers cf scftwara

D

for execution on military computers, there is a recognized,
though less formal, intent to make available to commercial
vendors the compiler products developed under the military
umbrella. This gttitude is consistent with one of the
initial criteria imposed by the DOD on HOLWG; that of
creating a language of high enough quality so as to be
attractive to commercial and other interests outside the
military arena. To this end, the DOD has attempted to
enhance military-industrial communication by offering
compilers, programming tools and compiler test sets upon
their completed development to commercial vendors, with the
proviso that such vendors pay a nominal fee for distribution
and submit trouble reports to the DOD when trouble with the

unit is recognized. 1In addition, Ada software developed by

19

P T 2 Yl

e e e e e e R e e e e s o n ® a g ua e At e e et mlataliSoRMaNa P Moo nd

R AN I A T R S i A R R A TR TR iR i T T i i i T f T i i ko i s |

[FUS ST 1 A g Amiass —— - s o . s .
=Py ettt A, il e AT s e e e ra to g, tog S-St =SS WA T JORC SLIREY M RN N

the DOD (except that software belonging to the core Aada
development and introduction program) will be available to
commercial vendors cn an unlimited basis, wunless it is
determined that procurement by the vendor under limited
rights (and DOD's right to redistribute) would result in
significant savings to the government. It is reasoned by the
DOD that encouraging interaction between the military and
non-military interests involved or potentially involved in
the Ada language and its surrounding environments and tools,
will foster the growth and acceptance of Ada in the non-

military environment.

E. EDUCATION IN THE ADA LANGUAGE

Commensurate with the development of any new programming
language is the need to address the education of those who
will be responsible for the development and maintenance of

that new language. This need is brought into even greater

focus with Ada, since Ada incorporates new concepts and

facilities as yet unseen in prior programming languages. To

-
u. "
4
4
o
d

begin with, Ada is perhaps the first programming language

94
where the system goals of modifiability, efficiency, reli- ‘;
ability and understandability were specifically and formally 15
recognized as necessary goals of the language prior to the ;:
initial design of the language. In support of these goals, _2
the software design principles of modularity, abstraction, j
information hiding, localization, uniformity, completeness ‘é

20

L

'''''''''''

EE—— Lk it i s e e e e R i A i i e R T S B e e L e e
. SO c ; - "

and confirmability were also specifically recognizesd as
necessary elements to the language prior to its design.

With these design goals and principles established as a
backdrop to the Ada design effort, certain specific and, in
most cases, unique design characteristics evolved out of the
Ada design endeavor. These characteristics include an
object-oriented design methodology, strong type-checking
across module boundaries, packages for specifying logically
related collections of resources, high-level concurrent
programming facilities, tasking to permit communicating
sequential processes, and a system framework wherein the
language itself and the support environment within which it
resides are seen as a "unit".

Together, these goals, principles and design
characteristics provide a novel training opportunity to
present a coordinated view of modern programming practices,
and to this end, the HOLWG established a Subcommittee on
Education and Training in March of 1979. The guiding
philosophy of the Subcommittee on Education and Training has
been that Ada represents the cutting edge of a new software
technology that will inevitably result in a more structured
working environment for programmers and program managers, and
an environment that will require the adoption of interface
conventions which will, to a large part, rely on modules

developed by others. It is not enough to accomplish local

21

§ R WP _j

l M
i il B

M TP
B diaitsostec sh

y LA
, . !
T ey .

' ,
1"1"

"

ri
"

& Voo

Y 't

S Tam

L -

T T e

I i A T N i R S A R B B B e B s o e e I

changes in existing language programs if the proper usaz of
Ada's novel features are to be realized, though spinoff
courses such as "Ada for FORTRAN programmers" or "Ada for
Pascal programmers" will undoubtedly appear. Rather, Ada
requires the programmer to internalize a top-down, modular
approach to program design that results ir programs wnos2
structure is substantially different from existing high level
or assembly language programs. The new style of modular
thinking required for the effective design and use of Ada
programs is more difficult to teacnh than the syantax and
semantics of thae language itself. This is in large part due
to the fact that many of the issues involved in teaching the
Ada design methodology are language indapendent; while th2
Ada language provides linguistic support for the modern

sof tware technology on which it is based, the underlying

software methodologv and problam-solving technijues are

themselves independent of Ada or any other particular
language. This "independency" between language and software
methodology was not by accident. Rather, it was specifically
intended by the HOLWG as a means to more easily accomplish
the possible transition from Ada to whatever future languages
that might come along. The HOLWG reasoned that though
languages may come and go, a sound and well designed system
of underlying software methodology and problem solving

techniques will stand a better chance of survival over time

22

B B b Bt s o st B e B o i . e B W R e s st B Bt Bt Bt BB e B e BB oo B W @ W

i e e e |

. 4 - 3 o
%>) TR PRSP VN) DR TN R MU TSCI0.. 4l NI SR

- .
B manasa. s

E;‘l. bt oot]

i

- N T i R W S e e i e i e g e e e R T Olla's T < T A D B § T r Sl meed s s o o Ly 5 =
e - . B <

and will provide a standard and foundational basis with which
to describe the desirable properties of programming languages
in general, as well as a basis from which future programming
languages in particular can be developed.

The threshold, then, to be overcome in the training of
programmers and program managers in the Ada language is
substantially higher than that of previous languages, as Ada
demands an understanding of its underlying philosophy and
approach prior to the understanding of its syntax. This is
trulv a "macroscopic" avpronach to language design, since it
forces the programmers and program managers £o maintaina a
perspective on the language which sees the language as merely
a vehicle with which to enforce the far more important
philosophy behind the language and the geals and srinciples
supporting the language. This approach has the added benefit
of forcing the designers and users of Ada to consider the
effects of using Ada as a programming language for any
specific project over the project's entire life cycle rather
than in piecemeal fashion.

To meet the Ada training challenge, the Subcommittee on
Education and Training is coordinating various individual and
coordinated training programs among the components of the DOD
and, in addition, is endorsing education and training

endeavors within the commercial and academic sectors both at

home and abroad.

23

o gt S =i g - e .
L“L*l.l_“_.‘..-._.‘.&k A e TR W OE I R T Y S e e

— g oy

LGN -V PO b SR T SRS ST PRI N N LY SO LS Y T

2 FRSRSONLEI NI T G S M

PRGNS 7 LA ISP A - |

- .- % - u -~ T TP Ty T v Ll § . . i LS A3
: _, 3 i T T T

F. ADA AS A "SOLUTION" TO THE SOFTWARE CRISIS

! There is little doubt that the development of Ada has

- caused considerable commotion in the computer softwar= arena.
Some would argue that the horse is finally once again ahead

. of the cart in software development in that with Ada there ;
seems to have Dbeen no expense spared in laying a
comprehensive and foundational design strategy and framework 3

l prior to designing the language syntax itself. Ada aovears i

to represent for the first time an attempc to build a 4

fundamentally new software design philosophy rather than just

3

e another "new" but, in fact, patchwork software languaje. ha
software crisis is with us and will remain so for many years
to come, but the injection cof the Ada language into that

l crisis will at least slow what is now an uncontrollaole rate
nf growth of that crisis. This, of course, assumes that both

DOD and non-DOD interests continue with their efforts on what

appears to be the right path.

24]

e e alocme B - G Mo B At et naithstcorsin e i B o 8 s b - . !

e Lt

TR v - i ek foce coen v s oan ey 2o oo L v e
proey e s S e g oL g P N I e T

II. SOFTWARE ENGINEERING CONCEPTS UTILIZED IN THE
DEVELOPMENT OF ADA

The fundamental reason for the exista2nce of the "software
crisis" is due to the unmanageable complexity of software
systems in general. As tools for software development
improve and as software system design experience increases,
this situation is clearly becoming more difficult to deai
with as newer and greater problems arise. A sclution for
raducing the complexity of softwara systems is attainable
through close adherence to the goals and methodologies of
software engineering supported by a high order language that
promotes and enforces these principles.

Software engineering is modeled on the technigques,
methods and contréls associated yith hardware development.
Although fundamental differences do exist between hardware
and software, the concepts associated with planning, develop-
ment, review, and management control are similar for both
system elements. The key objectives of software engineering
are (l) a well defined methodology that addresses a sof%are
life cycle of planning, development and maintenance; (2) an
established set of software components that documents each
step in the life cycle and shows traceability trom step to

step; and (3) a set of predictable milestones that can be

25

S Sogn el ees o

L..-.‘,--;.'.A-LJ..A..L.J

-
Al

e Ao

RN

- [-
PP Ln: YL RSN i l_. 4

P
P A |
LA Avaaa.) i

reviewed at reqular intervals throughout the software lifa
cycle [Ref. 3: p. 15].

The purpose of this chapter is to delineate th2 goals of
software eangineering and discuss the associated principles
that enable software system designers to attain them
[Ref. 4]. This chapter will also discuss software
development techniques and tools that utilize these software

engineering principles in the design of software systems.

A. THE GOALS OF SOFTWARE ENGINEERING

The most fundamental g0al in the design of sofhware is to
ensure that the resultant product satisfies the designated
requirements. Unfortunately, there often arises a misinter-

pretation of the user's stated requirements by the system

=
=4

(]

implementers. aAs a resulit of this wmisunderscanding, caa

]
V¢]

in requirenents during the life cycle of a software system is
inevitable.

The acceptance of the inevitability of changes in
requirements during software dcvelopment has resulted in the
establishment of a set of goals that overcome the effects of
such change. Four properties that are sufficiently general
to be accepted as goals for the entire discipline of software
engineering are modifiability, efficiency, reliability, and

understandability.

26

i i Sl e e T T A B S bt i S E SR s e e e e

Ty

AR T
SRNCO £)

LR A “f L]
i s o ! NEEE

S~ A

LA S AR e S
3 .

VJ \'“"

R ol e o B BR TR R 0N & e

1Y

DR ek e R I R e R iie e W i Sl et e e Sad e e e e e i e e e —

1. Modifiability

The goal of modifiability is the most difficult goal
to master and to measure. Modifiability implies controlled
change, in which some parts or aspects remain the same while
others are altered, all in such a way %that a desired new
result is obtained. Modification during software development
may occur as a result of a change in the system reguirements
or in response to the correction of an error made earlier
during the development phase of the system.

The modification of a system must take into
consideration tha maiantenance of structural integrity. If
this consideration is ignored during modification, the
software will become sagmented, resul*ing in a potential loss
of logical flow. This will invariably iead to the original
design becoming vague and unintelligible, making €£ollow=-on
modification to the system very difficult. The key to svstenm
modifiability is that it should promote the ability to change
the software without enlarging the complexity of the system.

2. Effieieney

In well engineered systems there is a natural
tendency to use critical resources efficiently [Ref. 3:
p. 284]. These resources are classified into two basic
groups~-~-time and space resources. Time resources are
generally concerned with procass execution in a predetermined

timeframe; hence, they tend to be hardware dJdependent.

27

~

,l %l

TRORT IR

J
|

1

1
g
4
4
1
1
|
1
)
]
L

T LTy

‘,.,._._.,\.“‘,T.,.:“,‘.W-v:m-—q—--!

L ¢
v s
s

It

=TTy
e et
-

oy
N

o However, selection of the proper software algorithms will

E@ obviously enhance the time of execution. Space resources are)
concerned with the physical side of the execution process. S

Embedded systems are often required to consider both E

classifications to promote efficiency. If the embedded i

system is concerned with real events, time resource

j
{

3

C

;T efficiency becomes paramount. If the embedded system is
3 constrained by the physical size of the existing nardware,
E then space resources become the overriding concern. Most
& often, the efficient use of the two classifications at the

same time is not attainable and a tradeoff must occur.

i in order for efficiency to be attained in 2 system,

- it must be considered throughout the entire systenm

development and not just in the early phases as is most

common. Insights reflecting a more unified understanding of
a problem have far more impact on efficiency than any amount

of "bit twiddling" within a faulty structure. b

3. Reliability 3
As more and more computer systems are being developed
to operate for long periods of time with minimum operator

interference, reliability of the system is taking on greater

importance as the price of system failure reaches
unacceptability. Reliability must both prevent failure in
conception, design, and construction, as well as recover from

failure in operation or performance.

28

J
|
|

Bl

- 1
o "
1 As with efficiency, reliability must be a concern

:G throughout the entire software development program. Most ;
o often reliability is considered too late, or not at all, in

)
7

T LI & v

by 3 383 -
.

1 0 e a’a

most software development efforts. Reliability can only be
built in from the start; it cannot be added on at the end.)
Hence, reliability has a pervasive and crucial effect on

software engineering practices. A well engineered, reliable

E! computer system must fail gracefully with little or no effect
ES' to the system overall.

E; 4. Understandability

F! Understandability is the Key to tne proper management
;‘ of the complexities inherent to software systems. Under-
;f standability is not exclusively a property of legibility.

The entire conceptual structure is 1involved.
Understandability bridges the true system with the perceived

system. Although understandability is a prerequisite to

reliability and modifiability, it is also important as a goal

in itself because it draws attention to the complexity of the N
system. The only way to achieve understandability is to]
P
impose clearly notated structure and organization on the ﬂ
system.]
f. System understandability is further enhanced from the i
rq
e impact on the system from various levels in the structure. p
t} From the lower 1levels, proper coding styles lend themselves f
el to understandability. At the higher levels, the ability to]
3 1
*’ ;
> 1
o 29
-9
-’_: #
; . | :
SR W NP B P, R S M O ST S S P 1] i ;

e .
S Ceeres
T .-

expedite the segregation of various algorithms and data

structures aid in understandability attainment.

B. THE PRINCIPLES OF SOFTWARE ENGINEERING

The software engineering goals are clearly applicable to
most if not all software systems. These goals, however, are
not attainable simply through utilization of any software
development methodology. 1In order to achieve these goals,
the software development approach must be highly structured,

well disciplined and closely adhere to a basic set of soft-

ot

ware 2ngineering principles that support theses goals. The

-~

(3¢

principles of software engineering include abstractions,
information hiding, modularity, localization, uniformity,
completeness, and confirmability. Proper utilization of
these software engineering principles can result in the
development of a software system that is modifiable, effi-
cient, reliable, and understandable.

1. Abstraction

As stated previously, the inability to manage the
complexity of software systems is the primary cause of the
"software crisis." Abstraction lends itself to managing the
complexity. Abstraction exists in varying degrees throughout
all levels of the systems hierarchial structures. Each level

of abstraction is built from lower levels which in turn were

built from even lower levels in the hierarchy. 1In developing

software systems, the level of abstraction that satisfies the

30

PRSP -

........

RS 1

-

o= n S U S S
JA P PP

-

BURESS B S MO VAR - -4

e ke i G ¥

stated requirements is utilized. The essence of abstracticn
a is to extract essential properties while omitting unessential
8 details. The 1levels of abstraction formed through

hierarchial decompositionr, display an abstract view of the

lower levels purely in the sense that details are subor-
dinated to the lower levels. The principle of abstraction
ensures that a given level in a hierarchial decomposition is

understandable as a unit, without requiring either knowledge

G

of lower levels cf detail or necessarily how it participates
in the software system as viewed from a higher level.

2. Information Hiding

Information hiding enforces the abstraction prin-~

e U e o e B o 4
YA - S ST

ciple. Where abstraction was concerned with the extraction
of essential details of a given level, the purpose of infor-
mation hiding is tc make inaccessible certain details that
should not affect other parts of a system. Abstraction helps
to identify details that should be hidden, wnile hiding is
concerned with defining and enforcing access constraints.

The application of the information hiding principle
in conjunction with the abstraction principle promote goal
achievement. These two principles, besides encouraging
system efficiency, assist in the maintainability and under-
standability of a software system through reduction in the

amount of specific details a system programmer would be

requested to know at any particular level. System

»
a

A —
T

2L

-!z U ok B

CI S, 3 .o . ’
5 > e e e e S A e A B A e o et e S ar e e at gt w oAy

St e R Aatt Rach D sty Bhai loarh Shei St Lta et debe Jiei S Mg die et S i o Shece Ui ool St cona fone Lol - e w—— T e
“"en L S D . - -, - 3 Sl e S i

bodl DR

Ty
QP BT

T
n

'."2

Ty
L

T Y
i e
‘l;l A" . l'l..l

Paassarsacs
e e
oS W

SO - $RERRTOOL)

AR &
0 - .

ek]rv-_-.‘r'
.Y ’

ot Yad 2
.

- - - -
v
2

................

reliability is also elevated through the application of these
two principles, for at each level only certain pr=defined
operations are permitted to occur preventing any inadvertent
operation from taking place that could violate the logical
structure of that level.
3. Modularity

It has been stated that modularity is the single
attribute of software that allows a program to be
intellectually manageable [Ref. 5]. Modularity is concerned
with the dividing of a program into subprograms (modules)
which can be compilaed separately. Modularity yieids a
hiecarchial structure, for when decomposition of the software
system occurs levels of prcocgram modules are created.

In utilizing a top down approach in software design,
a decomposition of each successive level into distinct
functional modules will occur. Most often, higher level
modules are related to high level abstractions, and therefore
are denerally machine independent. In addition, a nigher
level module will specify what action is to be taken, while
the lower level modules define how that action is to be
carried out. Lower level modules are dgenerally machine
dependent. If a bottom-up approach to software design is
initiated instead, decomposition of the system begins at the
bottom of the hierarchy resulting in the creation of highly

complex modules at the top of the system.

32

PP >-7-f SRR PUCPCE R PRI

RN ¢ - VRIS

ol By STV Wy |

i anbaata st miaatainte SR it

T T T i i i s o e i e e e e e e e o S o e e e el e el o o e o o

[]
The key to the enhancement of system r=liability :
through the use of modularity is to ensure that a well ;
4
defined interface exists between eacn module. A well defined f
X
interface is an explicit set of assumptions one program]
[
a -

module makes about another. These interfaces are the "connec-
tions" between modules. A measure of the strength of these .
] interconnections among modules is known as coupling. Loosely £
- ¥
“ coupled modules are most preferred for they result in greater D
; modular independence. Cohesion is another modular measurement 1
3 !
4 which defines how tightly bound or related its internal f
F 2lements are to one another within the module proper [R=2I. 5: L
% i <
8 p. 85]. Strong cohesion within individual moduless is most]
degirable for it implies that the components of a particular i
i3
module are functionally and logically dependent. L £
4. Localization 3
The principle of localization assists in developing i
y
program modules which demonstrate loose coupling and strong 'f
cohesion. The principle of localization is concerned with]
physical proximity where related elements are brought toge- 1
F
ther all in one module resulting in a reduction in resource '{
redundancy. Through the use of the localization principle,]
1
: g q q]
logically related items are collected into one physical ‘
module, forming a module that exhibits strong cohesion. The !1
1 localization principle also implies modular independence, f
b]
[resulting in a much desired loosely coupled system.]
Eoo »;
3 :
- 3
4
1 33 4
L]
b -]
3 ®:
) 1
&]
d 1
L 1
D RO WY SO NS, SRR SORT S e W et o N it P % = el gl . 4

T

vy
¢

Oy CRUROINGGIEE — Hialiihiadiiat 5 § Saserin

L BN R gl gl
e W

W
.

R

PR R e

2

Y

[P e Y

T i el A At o Sin g AT S S i et e i A s o o e o S A M

<

The principles of localization and modularity lend
themselves greatly to the attainment of the goals of software
engineering. If a software system is developed tarsugh the
implementation of these principles, then the anderstand-
ability of any particular module should be pnossible
independent of the other modules in the system. Subse-
quently, since these principles tend to localize design
decisions into pre-defined modules, the 2rffects of modifica-
tion to the system can be minimized to a smaller more
manageable collection of modules. The gJgoal of system

=27 30

2T

ra2liability is enhanced Jdue Lo the fact that the peos

LI

of these principles will result in a reduction in the number
of modular interfaces. 3
5. Uniformity

The uniformity principle is directly related to the
software engineering goal of understandability. Uniformity
is concerned with intermodule notational consistency in areas
such as naming conventions, code structure, intarface
descriptions, etc. Uniformity is achieved through the use of
proper coding techniques, where application of a consistent
control structure and calling sequence for operation is
utilized and where the depiction of logically related items

are identical at any particular level.

34

PP TP T RO B I

(N

R i S it i i ar i i b i R e e e e e e e e o - e e y ——

6. Completeness

The purpose of this principle is to ensure that all
essential elements have been included in the software system
development. Completeness is achieved through proper
iterative design procedures through the systeam development
phases. Completeness in combination with the abstraction
orinciple, results in the development of necessary and
sufficient modules supporting the goal cf reliability.
Completeness also =2nhances the efficisncy goal, because it
becomes possible to adjust a lower level module withcut
aff€acting modules in tha higher lawvals.

7. Confirmability

The principle of confirmability is concerned with
achieving stated goals contained in the software system
requirements and specifications. It is, therefore, paramount
to ensure that system requirements are accurate and that
system specifications are testable. Confirmability implies
that decomposition of the software system must occur so that
it can be readily tested resulting in a system that is
modifiable. This principle is most commonly realized through
the use of informal software system reviews such as

structured walkthroughs [Ref. 3: p. 141].

3%

-y

C -
Poamm &

v

4 L .
SN P R S

gl i)

Rtttz s -
VRV T P S SR vy

|-
okl

__‘-‘.;_3-4 LA—L—“_I;EL‘—-J-‘AAJ_:A—————

e — S e B S T, B i — - —— = — ——
LS . L e e e N 4 e e et s T B E i D e i 2 T T Y W T W W W Wy
. L

1Y
=)
-

]]
L C. SOFTWARE DEVELOPMENT DESIGN METHODOLOGIES
] Software engineering principles will, when corractly >
|- applied, achieve software engineering goals. Howaver, these

principles cannot be implemented in a casual, hit or miss

modularized, a uniform system decomposition standard must be

T 1'1';-v e

Y

fashion. As software systems are becoming more and more {
4

b

:

adhered to. !
[

3

E There are denerally four recognized design methodologies .]
|

E that exhibit a uniform standard for system decomposition. i
M. <
E these are top down structured design, data structured design, j
L. 5
P 2arnas decomposition critzrion and cobject crisnted design. ﬂ
& l. Top Down Structured Design 1
-

Q: The tco down structured design approach is based upon _i
ﬂ the nierarchial organization of modules. This approach é

.
s

suggests the decomposition of a system is achieved by making

4

o i e i ul e il
el Vo Ao P

’
e

each step in the process a module [Ref. 6: p. 106]. This

w9
ST

approach begins with the top level module designed in terms

’

»
g

of the modules of the next lower level. In essence, a deter-

mination is made as to what type of modules will be required

Do
'AI’ gt s

o on the next lower level and how they should be connected to
;. form the top level module. As this iz happening, no conside- 'E
- ration is given about the detailed construction of the second -3
M i
p lower level modules until the top level module has been %
J satisfied. This process continues until all modules at all b
f
‘ o .{
1
36]
1

.
R e o T T NO W VSRPNO NP SO UG SN S S S ~ . - A j

O |

-
»
-

L]

i "
oA !

S s N Sl Ml Ml ieme Jum Aeb S S A it duiiisie® Seachdn oan e ran S e St i an Gt il A G e e A S T — - -
. -t etar . : = o e . - -

levels are formulated in terms of the modules below tham.
This process results in prcegram modules that are highly
functional and well defined. The higher level modules contain
the highest levels of abstraction, while the lower level
modules contain the primitives of the system which implement
operation in response to higher level actions.

2. Data Structure Design

The data structure design methodology converts a
representation of data structure into a radresa2ntation of
software. Utilizing this approach, the data structures must
f£irst be defirned, and then the program elements are sht-uc-
tured based upon the data structure itself. This then is an
attempt to clearly and pracisely explain the implementation
of the objects in the solution space and then allow their
specific structure to become visible to the essantial
functional elements that furnisn the operations on the
objects. In general, data structure desijn defines a set of
"mapping" procedures that use information (data) structure as
a guide [Ref. 3: p. 141]. This approach recognizes the
necessity for the design of the program to reflect the
structure of the problem.

3. Parnas Decomposition Criterion

The Parnas decomposition criterion methodology is
based upon the idea that as a system is decomposed, each

module in the system hides a design decision from the other

37

.
PO T § LSy WOy wpv) Bt et Bnestedh Anoeiisornsdivonsslimnadaiimtsdbmmd e B A S P Ll Al e R P

- -

VIPUTSLIFRIES & =¥ B WY

s a2l A

WES TN | S S ISP SILEDY - FPUT B SN SO Tl PSRN

SAPVRPRES)

™ s

S VSO AT DS

N ¢

N S e R e e g G 2 i P i i i N i i Y = A Yl e oreg o T T T N T ey
e, . e B . . - 5 - T~ -
Pl

[B SR

| Sy M SN W

- .

modules. This approach is implemented through an initial
identification of difficult design decisions or Jdasign
decisions %that are likely to change over time. Each program
module is then designed to hide such a decision from the
Others. This results in the capture of design structures in
the sof tware at the level at which the design decision is
made. If modification of the softwarz system should become
necessary, ability to minimize the effects of the modifica~
tion should be readily available. This criterion alszo
supports the idea that to achieve an efficient syvstem
implementation, the assumption that a modul2 is onz or mora2
subroutines must be abandonsd in favor of allowing sub-
routines and programs to be assembled collections of code
from various modules [Ref. 7: p. 225].

4, Object Oriented Design

Object oriented design is a relatively new approach
to software design that has developed as a result of the
works of various people in the discipline [Ref. 8: p. 38].
This methodology allows the mapping of solutions directly to
the designer's view of the problem. The object oriented
design approach first cle2arly and concisely defines the
problem. An informal strategy is then developed to provide
initial direction toward the solution of the problem.
Finally, the strategy is formalized. During this step,

identification of the abstract objects at given levels in the

38

y CR e

.
A-JL

.'_.‘..lm .

w .
ain Al atatalalafal

VAT)

‘

.
‘aala. A'2a'at'a

3

]

4—-—‘1“‘4—“‘.‘_‘!“‘"-"

]
e

......

e T F e Wy —— R S VR Mg W A T T P T L Ty

system takes place. The appropriate operations on these
objects are then defined. Interfaces are established and
operations are implemented. The last step is to devalop a
module that hides the implementation.

This methodology provides a meaningful strategy for
decomposing a system into modules, where design decisions are
localized to complement the real world view. This approach
also provides a consistent notation £or choosing the obi=cts
and operations that form the design. The obiact oriented

design approach provides an enforcesable structure which

T

should ease some of the comblexities involved in softwar=z

system design.
D. THE USE OF PROGRAMMING LANGUAGES A5 SOFTWARE DEVELOPMENT
TOOLS
Software system design methodologies are nct sufficiently
capable of producing computer solutions on their own. These
approaches require the assistance of software tools,
particularly through the use of programming languages, to
express and execute design. 1In order to discuss the evolu-
tion of programming languages into efficient softwar2 system
design tools, a language generation outline of the most
popular programming languages and some language fesatures are

provided ([Ref. 9]:

39

e ST PR P B SR SO S S S R S T S SO SN S

a
:3
]
"3
;
B

P o P T Y TR

feses ot

T

i e
U o

T Tt iy
SR

o et e il i i I i e e M e B i T T Y W LR Sl St oo oo 4 ——— v

~

First Generation Languages (1954-1958)

FORTRAN I
ALGOL 58
Flowmatic
IPL V

Second Generation Languages (1959-1961)

FORTRAN II subroutines, separate compilation
ALGOL 60 block structure, data types

COBOL data description, f£ile handling
LISP list processing, pointers

Third Generation Languages (1962-1970)

PL/1 FORTRAN + ALGOL + COBOL

ALGOL 68 rigorous successor to ALGOL 60
Pascal simple successor to ALGOL 60
SIMULA classes, Jdata abstrackicn

The Generation Gap (1970-1980)

Many different languages, but none endured.

As can be readily seen from the outline above, the more
commonly utilized high order languages, FORTRAN and COBOL,
came into existence in the early history of computer science,
before the advent of the "software <crisis." Accordingly,
these high order 1languages were not founded on modern
sof tware design principles and, as a result, these languages
nad to be modified by use of preprocessors (S-FORTRAN) and
extensions (FORTRAN-77) to bring them into compliance with
current software design methodologies. Needless to say,
these languages were formulated prior to the recognition and
acceptance of the fact that large, modern software systems

are far too complex to efficiently manage.

40

Lot PYE) . 2
R e t Y SV SUV STV NCHPUEAVSLIDEC IS IPNS. WU TR R TS S PN IR R S SO ISP T ST S U NP S D W AP

4 PeLpee e |

fhaeac J'“_'. I ,-',“._', L

| AL

-
& 3

i al

NEN A FOPEr RPN

Sl it

.’
Las

- e =
R o AP PR R

L&
]

-y il At e S S W e et e e e e et e i e e e

~

These high order languages continue to fulfill needs of
their individual problem domains; however, since their
creation, the large embedded ccmputer systems domain aas
arrived. None of these high order languages was designed to
cope with the inherent complexity associated with embedded
systems.

A discussion of the basic structure of these high order
languages will demonstrate some of their intensive problems
[Ref. 8: p. 34]. FORTRAN and COBOL were both designed with
flat structures, primarily made up of global data and one
level of subprograms. The inherent danger associatsd with
this type of structure is that an =2rror introduced in any
segment of a program can result in catastrophic ripple sffect
across the entire system due to the global data structure.
Modifications to large systems utilizing these high order
languages generallv result in the disintegration of the ori-
ginal software system design structure. Maintenance on
programs written in thase languages often produces large
amounts of cross coupling among program units, resulting in a
lessening of system reliability and solution clarity.

Most of the second and third generation languages became
capable of providing a larger nested structure for more
complex algorithms. However, there was little or no
improvement in the ability for describing data structures.

The basic structure of these languages was very similar to

41

Dbt i Lo e i o

-
Smd ca

Rics

s b

|
Y WP TII TV |

.

] &

.
Lo asa

S . o
WITRLY, - e B

1 AT NI TR IS by

sk

o athendeadecad.

kissiia

u
:
:

2l abhe tnliale

L o

that of the first generation languages with the major

1

[
w3

difference being the existence of subprograms witt
subprograms. Unfortunately, these languages were plagued
with the same problems inherent to the first generation.
Some languages in this generation such as SIMULA, did
demonstrate the ability to provide greater data structuring.
However, these languages failed to gain any sizeable
credibility.

Assembly languages are presently the most commonly used
languages for embedded systems. Assembly languages exhibit
NOo inherent structure. As a result, assembdbly languaqg=s
provide grzat flexinility in Javeloping systems and assembly
languages can be written in structured assembly code.
However, once a system becomes fairly large, the meres nature
of the language tends to confuse the organization.

The evaluation of fourth generation languages, such as
Ada, are already demonstrating tremendous potential in the
alleviation of the problems associated with the description
of data structures. These languages are able to control
system complexity through physically concealing unessential
details at each system level. Their basic structure supports
the localizing of design decisions, and maiatains the

structure of the original design as modifications are made.

42

L '3 ». - . »

. .
o e

™y 4.-_'.. L

._»" RO CROR Sy

. N
PO 'x-:‘_‘." FeTR

-
PO T -

_A_LA.‘!J'E"". R

ekl g g

............

III. SURVEY OF CURRENTLY DEVELOPING PROGRAM DESIGN LANGUAGES

During the past several years, industry has seen an
explosion in the cost of software production coupled with a
decline in the quality and reliability of the results. A
realization that structured programming, top down design, and
other changes in technigues can hel® has alerted the field to
the importance of applying advanced design and programming

methods to software production [Ref. 1l: p. 5]. One of the

(a1

most promising softwara system design tools to =2merge Ifrom
the appreciation of this problem has been the development of
the program design language (PDL) concept. This chapter will
define the program design languag2 <oacept through a
discussion of its functions and attributes, and conclude with

a description of currently developing PDLs as outlined in

Reference 10.

A. PROGRAM DESIGN LANGUAGE CONCEPTS

The term program design language i3 used synonymously
with other recognized software engineering terminologies such
as pseudocode, structured English, and metacode. However,
for purposes of discussion, the acronym PDL will be utilized
exclusively throughout this chapter and the remainder of the
thesis. Conceptually, a PDL is a very high order programming

language designed to relate the logic of a program module in

43

. PR I - NP p— B

i e

USRS BRI NP SPAIPITREN MY, -) POOTE W By 400 1 - o e)

=

.

Y & 4

o SR ICPENOICNBTRIT . ST

h

- § DN

=y
.

LA]
'3

LA~

.y
P

JEies + § 20k

R

L
4]
E.

.".':1‘) s .-FT

Lt ol oy
-'-

MO SETYY

o

-

-
it

WL -) Sa® .
I S Y W W 1 Sad, [P St icnch e B ey D el Al aan o P C NP I S W Y

an understandable and readable format at any given level of
detail. PDLs were originally designed for a top down approach
to software system design development. It is ccnsidered a
"pidgin" language in that it uses the vocabulary of one
language (i.e., English) and the overall syntax of another
(i.e., a structured programming language) {Ref. 3: p. 253].

On the surface, PDLs apPear to be very similar to the
existing third generation programming languages developed in
the 1960's. However, a major dissimilarity exists in the
fact that PDLs utilize English as a narrativa text a2mbedded
expressly inside PDL stata2ments. PDLs combine this narzative
text with a £ormal procedural format that forces upon its
users a programming language-like syntax which <enables
automated tools to assist in the Jdevelopment of detailed
design. Presently, the combination of the narrative text
with the formal procedures makes compilation of PDLs
impossible. However, this set of automated tools known as
PDL processors, make it possible to design operational
indices, format text, produce cross reference tables and
nesting maps, check validity of the syntax, and perform
several other functions.

The input to the PDL processor is comprised of control
information and designs for procedures known as segments.
These segments are utilized to describe the algorithms used

in performing the mandatory steps contained in a program

44

T U T T Ty = > - - - - 7 - e e = = e =
o | e TR e et P T i i bt b i P L L L i e e e e LA LSgs et besih Senth At M Senet oce g pet o]

et M

e AOROARATIMOR. . | SO

P - MO

.4‘._‘1 - R N TRAY g N

e
s n S i

RN |

L

Y 4

F"_‘:‘:"‘ . R—— - S A A O A S e e e il e s e i e e S i Ty
| K] 9
! L
ke ;
B
3 L
»
-

module. They make up the interface specifications betwzen i

Y e
M =7

modules and are used to define the functions performed by 2 e

given module. Since PDLs utilize module structure in cheit

>
MG
i

architectural design, each segment contains onlv a small
portion of the overall system logic found within the module.

This use of PDL segments results in the crzation of

algorithms that are more precise, easily understood, and more
a rapidly modified supporting th2 statama2at thas, "Th2 2i1rdonse2
of a design is to communicate the designer's idea to other
people~-not to a computer" [Ref. 1ll: p. 271].

The outdut from the PDL processor is in the £orm of a
i working design document. This output has been recognized as

an extremely effective replacement for conventional

flowcharts. There are several apparant reasons why PDLs are

effective in accomplishing this:

1. They are machine-processable, using the text editing
facilities available in the software development 1
environment. -3

0}

2., They can be easily read, so that a groun of 5
designers can easily review the PDL of a given designer >
to determine the quality of the design (structured walk
through) . ¥

3. They are read in a top down manner and provide a
more accurate reflection of the program structure than
do flowcharts at a larger stage in software development

Through the example of simple sorting algorithm, Fijures
3-1, 3-2, and 3-3 [Ref. 19] clearly demonstrate the

overwhelming clarity inherent in PDL output documentation

45

s

Al ot 4

| SR 'y

. TIPS T SRR B W TESOT D TR Ly e N y S RO TP T PO TR T (O U N, WOULT P DU DT T T (R O L. QUL .. SO S W B S ek s o Eoa L -

vice that of conventional flowchart or a third generation

programming language (PL/I) presentation.

SORT (TABLE, SIZE OF TABLE)
IF SIZE OF TABLE > 1
DO UNTIL NO ITEMS WERE INTERCHANGED

DO FOR EACH PAIR OF ITEMS IN TABLE (l1-2, 2-3,
3‘4, ETC-)

IF FIRST ITEM OF PAIR > SECOND ITEM CF
PAIR

INTERCHANGE THE TWO ITEMS
ENDIF
ENDDO
ENDDO

ENDIF

Figure 3-1. PDL Design of Simple Sorting Algorithm

46

- -,
LI RE TON 7 T Ny JRCE] THRR W e W GPUI U ULV S . Sy W . st e DR T N W W R S S Wi R Y e = o

L e - = _— v T VN v
L e — T VI S S N N Y W e ?.,}

:

;i
L
%
9

e e

PORURES . RO R Rt MU (. Jr

Andad

e e
ot A

o et

1

T
s

NC

v
Vel

A

T

IN

< -

TERCHANGED

SRR SIS

N A I o —
et - .
L DEL LR

g%
>
e

COLiAL & B nlli
L 11 v -
L. &

VAL AL A N A
P B TR S T W A

N
<—

TERCHANGED

== RS

[

TEH?
TABLE(I
TABLE

<--=- TABLEC(D)
PG =IRAB BRI CESI
CRAIDIG= o L REME

4

(1

<--- I+1]

Figure 3-2. Flowchart for Sorting Algorithm of Figure 3-1

17

L

D W PERS.

Pt TIRT

WAWY PN LA

Bl
,j

X
.

-

n"“.‘-" [B B B
.

SN

"

-
YR
% T b e

i R b e T Lo i i R
i 3 .« e . '

. 'm i e L i il i et
. I SR o T e (]

SORT:
PROCEDURE (TABLE) :
DECLARE TABLE (*) FIXED BIN:
DECLARE INTERCHANGED BIT (1):
DECLARE TEMP FIXED BIN:
IF DIM (TABLE, 1) > 1 THEN
DO:
INTERCHANGED = '1'B;
DO WHILE (INTERCHANGED) ;
INTERCHANGED = '0'3B;
DO I = LBOUND (TABLE, 1) TO
HBOUND (TABLEZ, 1) -1;
IF TaBLE (I) > TABLZ (I+l) THEN
DO:
INTERCHANGED = '1'B;
TEMP = TABLE (I);
TABLE (I) = TABLE (I+1);
TABLE (I+l) = TEMP;
ND: .

]

END;
3ND;
ND;

3

END SORT;

Figure 3-3. PL/I Procedure for Sorting Algorithm

These figures lend themselvecs to demonstrating one of the
most important attributes of PDLs; the ability to quickly
develop a coarse profile of a problem solution that is both
raadable and understandable by all. This aids in design
modification since individuals at all levels in the system
design development phases are capable of quickly and
accurately identifying errors and potential problems and
ensuring correctness. Other characteristics that PDLs
should comply with are:

1. A fixed syntax of KEYWORDS that provide for all

structured constructs, data declarations, and
modularity characteristics.

48

s

o SIS oAy,
TR - () RPN

1.8~

..‘..‘I PP T Ry e)

-

2

-
ke
:
>
tl
k.
b
L.
1Y
-
14

r“"."»"".'u

[~

2. A free syntax of a natural language that describes
processing features.

3. Data declaration facilities that should include noth
simple (scalar and array) and complex (lianxkad 1list or
hierarchical) data structures.

4. Subprogram definition and calling technigues that
support various modes of interface description.

5. A PDL should be programming-language-independent. A
design described with a PDL should be translatable to
assembly language, FORTRAN or PASCAL [Ref. 3: p. 253].

PDLs in themselves are not a panacea for the ills that
affect software system design., However, if the PDL concapt
is utilized effectively, the goals and principles of software
eangineering can be achieved guite successfully.

Another software design concept which is gaining greater
acceptance throughout the discipline is that of a Systsm
Design Language (SDL). Whereas PDLs provide a detailed
description of a program module, SDLs can bDe vieswed as a
module interface language for a format architectural
description of a system. The SDL concept is a logical
outgrowth of the PDL concept. an SDL ideally will identify
those system components needed.to be constructed and what
interfaces each component provides and requires. A PDL, on
the other nand, il2atifias how each component is to be
constructed. Together, these concepts form the "blueprint"
for actual software system implementation. Although thease
concepts are closely related, a formal discussion of System

Design Languages is beyond the scope of this thesis.

49

s b S e A as » 3
ol PO W PP L i bl St bk ol ol bl o S o d ey e St P

=1

!.___..‘ - . R i e P T AN e i i i B - - e - e - T e - z 2 |

B. SURVEY OF CONTEMPORARY PDLS

Several software vendors have been developing PDLs to ﬁ
assist them in the cr=ation of software systems. ariNs
research and development effort has been stimulated to a

large extent by the DOD initiative concerning the development

of Ada for use with 2mbedded computer systems. Many of the
PDLs now being developed are in fact Ada-based design
mathodologies.

Four of the most promising PDLs currantly uader

s rvir vy darris Csrooration, TRE v
development 32 Sejng built by Harris Corporation, TRW, I3M

and Norden Systems. Each of these PDLs has a distinct syntax

and each supports a dimunitive wvariation in design

methodology. A brief description of each PDL follows. -d

i~ ORPOASEOTG S

Additicnally, a m@matrix deamoastrating caz2 3Ada rangJdage i

i i

features supported by each vendor's PDL is included as

Apprendix C.

1. Harris PDL

OhOAD SR
L2
S

AL A o

The PDL developed by Harris exceeds the confines of]

k]
b conventional PDLs by including guidelines for the software 'i
? development process. Harris redefines the term PDL to mean .?
E 'Process Description Language' to reflect the extended E
; application for the language. This PDL utilizes two %
) 1
E constructs for clarity enhancement, a 'call' keyword prior to -
|
!5 :
: .
50

o
AN -

| SRS N e WPUIL e - LI P T S L e g L P) e ol P ST IR SR N W ST WY TSI L S P R I

T R N T T Vv Y = W=, T e -—— e~y

s subprogram calls and an 'engage' keyword prior to task calls.

R The Harris PDL also embodiss six keywords fo:r £ile %

input/output. These are 'open', 'write', 'read', ’'closef,

€ eow 42y
iD

'delete’', and 'create'. Harris also permits the usage of

i i

structured English statements in the form: VERB NOUN/OBJECT :

;

: (OPTIONAL MODIFIERS).
E For the program develooment, the Harris PDL utilizas -j
i four approaches. The first approacn is top-dowva partitioning ;
E #hich is used to break down the system into layers of }
;; mutually exclusive subsystems, which, when taken as a whole, J
3 totally =2ncompass the original design. Th2 geccnd approzach »

e

is known as progressive elaboration. This approach is used

in conjunction with the top~down partitioning approach so

that as the system is being bDroken down layer by laver into
modules, destail is progressively added to the data and
process structures. Horizontal compilation is the next

approach. In horizontal compilation, as top-down

DMEESIELERIT

T

partitioning occurs, 2ach larzar zaa D2 tomput23
consistent and complete partitioning as well as correct
syntax. Vertical verification is the fourth approach. This
method is used to insure that nothing has been left out or
added in succeeding layers of partitioning. The Harris PDL
effectively lends itself to the achievement and support of

the software engineering goals and principles.

{
q
{
A

. "y "w - »
B R o SRRVt - W T = Wy o ¥ NP LY RPN AT W WD LAY VA IS T Y YR S T L N P S SN

T T T ep——y T ——— re—— w A - =

2. TRW PDL

The TRW Corporation is developing a PDL based
primarily on the Ada programming languages for use Dy the
Department of Defense. Since the issue of the utilization of
Ada as a PDL will be fully discussed in a subsequent chapter,
the description of the TRW PDL will be of limited scope.

The TRW PDL supgorts the basic constructs of the Ada
programming language, 1i.e., packages, compilation units,
tasking, generics, typing of data and data niding. However,

some Ada language features are not supported by this PDL.

(T

Simple statem: s such as null, proceduar=2 call, aborit, and

9

assignment lack proper supports.

The most significant £eature of the TRW PDL is that
it permits the insertion of narrative text into statements in
lieu of Ada comments. Although this is wviswed by Ada PDL
suppPoriters as 1 potential psroodolam, it iadicatas “hat TRA is
att2mpting to develop a PDL with a certain degree of
programming language selection flexibility.

3. IBM PDL

IBM has been working on program design languages for

several years. The methodology for the development of its

PDL is focused on the following design language requirements:

1. Enforced recording of both interfaces and behavior
specifications as part of the design of the software.

2. Imposition of structure while allowing for free-form
expression of specification ideas.

52

P
e O S D IPUETDUCPAR DAL 1P SIS T IPRT TR SOy N St W O WP O W T T D G MR N W SR R e

~~ ey

gl g

akiata bl oSl),

1% 2

i

P TP

Lt

[AR BRI BRI - Al DL NCBR AN b PRI

o R i i e < e Sl S e o e e D S e et s e ten Soan Lo oo e e T e o e T e |
i 5 . % z o o

S e g 1

e

3. Data declaratior facilitiess to allow definitioa of
both individual scalar wvalues and data groups.

B o]
= L

4. Definition of user defined data tyves.

5. Definition and use of procedure and functions to
orovide modularity.

Roectadintadantd 28

I 6. Concurrent assignment notations that one can axpress
. in a design the situation of several inputs producing
several outputs in an unspecified seguence.

1
4
q
|

7. Encapsulation and information aiding.
l 8. Formal commentary with specified format and scope.
9. Support for stepwise refinement of the design.
Currently utilized third generation programming
| languages pos3s2ss many, but not all, of the attributas Listad
abova. The growing popularity in utilizing Ada as a base €for
a design language is due to the £fact that these foramentioned
l attributes are directly embodied in the Ada language. IBM i3
develcping, in Ddarallel with its generic ?DL, an Ada PDL

which encompasses these attributes with other Ada concepts.

! 4., Norden PDL :
- Norden Systems has also been developing PDLs for some 3
« .74
. time. Their PDL is a non-compilable PDL similar to the 3
< Caine, Farber, and Gordon PDL discussed in Reference 1l. 4
This PDL 1 backs the more powerful language features such as 3
:
strong typing, loop exits, and tasking and, as a result, ;
(']
~ Norden has opted to develop an Ada oriented PDL. This new Q
PDL, NPDL/Ada, utilizes an Ada syntax, embodies the major Ada
language features yet retains the expressive f£reedom of the
s ?
>3
!)
e e S S VR R P e P _..‘- oAt B SN S IR R L PP S aa e St " PR = J

AL
e

44 _'.-_l_— T
PR

Rllo il Sl
. d .

i
e

i
.
0

% i

’

h
o
P

257
v esl B
. 5.2

’ 7

F-—:i-.t'-l_ .l_‘l. -_..-_‘.-_»-. - B T e L2 .7-:\.—‘"1_ -.vij_i.ﬁ'_‘r¥"<'~k P————— S R Sl T - R AN e

English language text while embedded in the more rigid Ada
control structures.

The software vendors who are creating PDLs, are
quickly recognizing the inherent value of utilizing the Ada
programming language as a basis for the development of PDLs.
The concepts and featuras that mafe the Ada programming
language so conducive to utilization as a 2DL will be

discussed in the next chapter.

54

. v
e e St RO PO WP O I SO MO RGOS ONEE RN S N RN R = oo

4
-
d
2
K
k.
3
i
’
| 4

T S
(3]

MR R & i e A

TE TV Y v, v &

Y TS T T I Y v Y

S il i e T s i e e e e o Dseno
. . o

S

IV. EXAMINATION OF ADA CONCEPTS

A. BACKGROUND

The explosive growth in the cost of developing and main-
taining complex software systems has fostered the advancement
of a large number of techniques and theories developed in the
area of softwarz design and development. These theories and
techniques include structured programming, top-down design

and implementation, structured analysis and design, modulari-

[

zation, and programming t=2ams and walktaroughs., Tha S=2nLra
aim of these thzories and techniques has been to attempt
intellectual control of a software system design via systema-
tic decomposition and abstraction of the softwarz droblam
into component modules and subsequent composition of those
modules into the system [Ref. 1l: p. 220]}. Only with an
intellectual control and working understanding of large,
complex software systems can the development and maintenance
costs of those systems be kept in check.

Recognizing that development of the Ada language provided
for a unique opportunity to discard the inefficiencies of
older generation languages while creating an entirely new
method with which to allow intellectual control over complex
system software, the HOLWG 2stablished thr=22 guiding
principles or goals early in the Ada development process.

These goals are:

55

T g \'r.‘ﬁ‘-‘\‘ e WL e . Carsn i . el e e ey - -
- — o e R . e - s e o

e o ._-l- AJJ‘LA_A.J.A.&‘

A) PO, - RPN 1PN T N e e J PR . VL T g, N O L U, S R

[.
Rl Sasiatubie die san tendins

R
e dandin ek diihe. basial

W e .
o k=0
ah=a st ot

PP

i el

I/ o0
cmbataeiobe uateaty d

1 pury My,

[A Bin/t Aucss Saase Tiest Shest J
S o e s

4« T
G

PR I

i B 4

T e R it o e o it i o - v i o Tt P P G ———— —
CE ey O O T B IO i o - . U e W 3 — e ey

- recognition of the importance of program reliability and
maintainability;

~ concern for programming as a human actiwvity; and
~ efficiency.

The finalized STEELMAN document reflected the
desirability of these three goals by mandating that the f£inal
Ada language support the following language features
[Ref. 8: p. 18]:

~ structured constructs;

~ strong typing;

- r2lactiv2 and adbsolute pr=2cision specification;
- information hiding and data abstraction;

~ concurrent processing;

~ exception handling;

~ generic definition; and

- machine dependent facilities.

B. LANGUAGE OVERVIEW

Of the three goéls envisioned by the HOLWG, the first and
most important was considered to be that of reliability and
maintainability, as together &these make up the largest cost
areas in a software system's life cvcle. In an attempt to
maximize reliability and maintainability of Ada software
systems, Ada was designed to be, and is, a design language.
As such, it focuses primary attention upon the interconnec-

tion of the interface characteristics of the components

56

» * . - .
O "I PR S S Sy SRy TR 2 AP PP AP Wy) TS SIS TN 1L D N VL U GNP, L LI - S NP R PSS SR AL R

B

§ RDIS RSN TP - VTP Y S

3
1
l
|
4
]
h
i
Y]
q

SIPLIUIN S S 2P I I

R S -t s Shat et i M e o s i s e Y T W T - Fedaire A o e aris St Srin B ~

v

within a svstem rather than upon the components themselves.
Somewhat like the manner in which a blueprint Jescribes the
way things fit together without extensive detail as to what
those "things" are, Ada emvhasizes the interconnection
between module interfaces over the structure within those
modules. Further, it is the interface charactaristics which
actually define the compornants which are used in the design
because the interface characteristics are all that the user
of the component needs to use the component and all that the
dasijner needs to design the component. This approach t»o
language Jdasign specifically supports modularizaktion, infor-
mation hiding and abstraction as ths user need not s=22 the
contents (how) within each module, but rather he need onliy
see the interface (what) and interconnection of modules.
This aprroach is also multi~tiered, as within each module
there exists a system of interconnectivity between interfacss
of lower 1evel modules, down to the level where further
decomposition becomes inappropriate. An Ada software svstem,
then, can be viewed in its entirety as a singls module with
the components of that moduls Dbeing the intsrconnections of
inkerfaces of lower level modules, and so on down to the

lowest level modules in the system.

C. OBJECT ORIENTED DESIGN
A methodology with which to approach the design of a

sof tware system where that system is intended to solve real

57

TR NS W T X T Dr e W TR TR R o P R T -

WE PR S e ¥ W - al et oal .

.

POV VIV IS I O-J00 SrPEAT P G Tl B R (14

LY T g

A RS A e T i Tad Y

[
[
L
|
.

e

et

N T T P T W T T — T g —y

2 GIACRon
° 4
‘d
L
L
‘d
A
F
A
A

L Fods e
i
. e

world problems has been advanced by Grady Booch [Ref. 3:

)

p. 40]. His methodology, called object-oriented design, ;

g T
fa g, nl
O] ?
P

begins with the recognition that there is a problem space

]_‘l_'.‘,.‘ ot

wherein real world problems ara begging of a solution, and

there is a solution space wherein computer software and ;

sl n?_. [
LS AOF £
"y . e

hardware combine to accept real world problems, process those

Ty
GG

g problems toward solution, and inject those solutions back i
E‘ into the real world. In any programming language the j
Ef programmer translates (abstracts) real world prooblems from i
: the problem space (real world) to the solution space |
(softwarej. Tne softwarz/hardware system ocperatas on zh2se é
abstractions toward a solution by way of an abstract problem- 1
solving technique (software algeritams), and the solution is j
then converted back to the real world by way of computer H
output. The primary problem with computer languages drior to]
Ada is that a considerable distance exists between the f
problem space and the solution space, resulting in the need ;
to 2xpend considerable effort in both coaverting :
(abstracting) to and from the solution space and operating E
efficiently within the solution space arena. I
#: The closer the solution space maps to our concept of the
; problem space, the better the goals of modifiability, effi- l
:‘ ciency, reliability and understandability can be achieved. j

Most of the languages developed prior to Ada are primarily

{
]
imperative; that is, they provide a rich set of constructs |
i

58 1

e e S WS ESSUEL ST TERCHRY T W U VAP W P A SRS S W D SNy o GG SO D o, Sy Sy S, U DU S S - L DL IS Wi

T y—

i r'I'"-l_I"‘ ———— .-;-.l
RS 18t

RPN RSO S

T T T i i e e S e - e e e e

for implementing operations within the solution space but are
j2narally weak when it comes to abstracting real-worl
o2bjects into that solution space. Additioaally, these
languages require that the real-world oroblem svace, which is
both multi-dimensional in description and highly parallel in
effect, be mapped into a solution space that has a relatively
flat topology as well as a high dependence on sequential
processing for solution attainment.

The Ada language, when viewed through the window of
Booch's object-oriented d2s5ign methodonlogy, allows us to

minimize the Jdistince betwaen the protlem szace and the

4]

solution space by emphasizing the fact that object-oriented
design is not a purely functional design tschnigue. Rather,
it recognizes the importance of treating software objects as
actors, each with its own set of applicable operations.

The three steps to object-oriented design, along with a
brief description of each, follows.

l. Define the Problem

At this stage we remain entirely within the problem
space, and attempt to gain an understanding of the structure
of the problem space at hand. This step will be iterative,

working from the general to the specific, and such tools as
SADT and data flow diagrams are wholly appropriate in

defining the problem.

59

P > .
e P S T PR S G PP NSIEP LN N . N TP . QI ST S P

T m g m g g

e p 'ﬂ

R R S
5

re
:

N £ il rorhan

-

2. Develop an Informal Strategy

Once an understanding of the problem space is gained,
an informal strategy as to how to arrive at a solution is in
order, where that strategy parallels our view of the real
world. This strategy is best kept within the realm of
natural English descriptions and in terms of concepts
existing in the problem space. In this way intuitive £feel as
to how to solve the problem is not yet lost among the

complexities of abstraction into the solution space.

3. Formalize the Strategy

In this step we finally enter the r2alm of the
solution space and incur the need for abstracting from the
problem space to the solution space. From the informal
strategy already developed, w2 first extract the nouns which
represent objects in the problem space and then the
qualifying adjectives which represent attributes in the
Problem space of those nouns they qualify. Nouns in the
English language can be common nouns (such as table or
chair), mass nouns (such as water or fuel), or nouns of
direct reference (which refer to a specific object in the
problem space). Adjectives 1identify the attributes or
constraints of these nouns, and when such adjectives as
"concurrent"” and "asynchronous" are used in the informal
strategy, the parallel nature of the problem space 1is

revealed.

60

S B'S P 4
e B e LI S PRT TS BRGNP ST S TRt TR TR SO W T P U T R “aan. e

i e e B A Boc Logs puen Litn doce O AR o -t o oan o . T = —— - -~ -
= v . o - - . e = - T w - . - L N R . B e TR
. % L

L IRGR ——

oo

LN

kot o a

TS Y 509 St WO

i i A i el i T T e i e AR s e T e i A T - LA e e o ben e oo W
5 . - R e e e S i i g] EE g 5

TR
D)
s

Having extracted the nouns and adjectives from the

5 saag T Y Y "
o el
- (2

A L v e |

informal strategy as obiects and qualifiers to those objects,
boe respectively, we must then extract the verb phrases occurring

in the strategy. In doing so, we identify the real world

v~ PORPAS. R RPCAI,

operations being performed on those objects in the strategy
and further associate each operation with a particular object
in the problem space against which each operation acts.]

Perhaps the most important step in formalizing the
strategy involves establishing the relationships among the ;
objects already defined. By this it is meant that the visible :
interfaces to each object are identified and formally ﬂ
described using Ada as the design language. By identifying -
the object interfaces and their relationships (interconnec- g
tions), a contract is formed between tne user of an object

and the object itself, and this contract explicitly defines -

the operations which may be performed on the object by the
user. The beauty of Ada is that it not only permits us to
easily describe such a contract but also enforces the

contract by preventing us from violating our logical

abstraction.

The contract having been made as to the permissable

{l operations useable against any particular object, we can then r
%\ implement those operations in the Ada language. This results E
Ea in operations which are executable, and further allows the i
E! development of a design for solution to the problem which is j
! :
':' 61

T L h !
L.. - e S TP ST Ry RO SO S Sy I B B o B B . b B o A e - -loa PRI COIPY:

- -
L‘...l&l_.l-hnl..—“‘wu-““«- el e | B

S A T R =y

also executable. The implementation of operations and th=

avaal

(oY

design for solution to the problem will naturalliy
lower level objects and operations needed to support the
oresent lavel of solution implementation. These lower level
objects and operations can in turn be addressed, leading to
further iterative decomposition until the point is reached

-
where further decomposition will not aid in system

understandability.

D. ADA LANGUAGE TOOLS

The fundamental building blocks o0f the Ada langua

d

e 372
program units, and every Ada program is made up of these
program units [Ref. 8: p. 47]). Each program uni%t is made up
of two distinct parts: a sdecification, wnich <ontzains kthose
entiti2s visible to other program units and wnich taus
defines the =xternal characteristics (intsrface) 9f th2 oro-
gram unit, and a body, which contains the implementation
details of the program unit where those details are not
visible to other program units.- The specification part and
the body of any program unit <can be separately compiled,
which greatly enhances the management of designing an Ada
sof tware system. This is because at any level of software
system design, it is only necessary to write the specifica-
tion parts of the program units used at that laval which can
then be compiled resulting in the creation of an enforceable

design structure to the problem solution. An added benefit

62

R s B s i i Bl Bt B - et gt G - - - - - -

e)

- PUPETY ¥ Y D]

“
I
[
.

B

...............

to the process of making distinct the specification part and
body of Ada program units is that it encourages voth the
construction of systems from separately built parts and the
construction and use of libraries of generally useable
component modules.

Ada program units are categorized into three distinct
areas: subprograms, tasks and packages. Each of these
categories is explained below.

1. Subprograms

Subprograms are the basic units for exXpressing
algorithms and provide the means for naming definable
functions. They have the characteristic of being sequential
in execution and can range in scope from being the main
program down to being a lowest level mecdule. The subprogran
specification defines the interface, or calling convention,
between the subprogram and the outside world while the
subprogram body encapsulates the algorithm for which the
subprogram exists. The applicatioﬁs for Ada subprograms
include main program units (the highest level of an Ada
software system), definition of functional control (where the
functions determined at one level of design are implemented
via subprogram at the next lower level), and definition of
type operations for abstract data (where user-defined or
abstract data types can be linked with unigque operations

regarding those data types).

63

- = -
B e e S e B R . o v 3 B e BB i B e B S LS = . e = UL AP

L

-

b N LR ERIRY | GO

waanx | et SR

4

1 . v ’ '
PEFREY) R PRI

s 4
Aodod b b

v-Jl-

POPEBEY -

Subprograms have two basic forms: procedures and
functions. A procedure provides the series of actions which
are defined in its body whenever that procedure is invoked,
and it may have parameters to pass information either to
itself or back to the invoking unit. A function has the
primary purpose of returning a calculated value where that

value is computed within the function and returned to the

v 2 r. LRSS '—_' ey

& o)

program unit which called the function.

4,
.

2. Tasks

¢
.t

Ty
s R e e

Tasks are the program units which define operations

ks,

or procedures which execute in parallel with other tasks.
Where most existing high-order languages provide little or no
support f£or che parallel execution of program operations or
procedures, Ada specifically accomplishes such parallel axe-
cution through the use of tasks. Since the real-world

problem space operates in a highly parallel fashion (more

than one event occurring at a time), the task program unit
serves to greatly reduce the distance between the problem
space and the solution space by eliminating the need to]
convert real-world parallel events into the serial abstrac- ﬁ

tion demanded by other high-order languages. Physically,

tasks may execute on multicomputer systems, multiprocessor

systems, or with interleaved execution on a single processor.

PR 4

As such, tasks can be seen as individual sequential

processes, Where each process interacts with other processes

.
P = LT)Y

64

- -
I Mtrsiosimsiatme Bmal. Sl anadin 185 W S W, B Sl S AP, S L. UL L P, S Aa s g il il . J
e Beainn o B B e oloimlia

R R s ke "‘r‘ g "_"’\"f".-'.‘f"lan'f‘.'r.‘-'..‘~‘-'q' e Y . - R =g < il i i

through a sophisticated means of communication and synchroni-
zation among individual tasks. The term "rendezvous" 2applies
to the place and time at which two individual tasks interact,
and it is this interaction among tasks that allows, for
instance, one task to detect and report the inaction or
improper action of another task. S5Such an approach 2nhances
communications reliabiliy and error detection within the
software system.

Like the subprogram and package, the task is divided
into a task specification, which defines the interface
between the tasX and other program units, and the zask bodv,
which consists of the task's executable vart.

3. Packages

Packages are the units used for encapsulating collec-
tions of logicallv related data, objects and data types. The
package specification defines the intarface to the package
and thus specifies which parts of the package may be used
and, furthermore, how they may be used. The package specifi-
cation may e further divided into a visible and a private
part, where the visible part declares the package resources
wnhnich may be used outside the package, and th=2 private part
which, while textually available to the package user, cannot
be referenced outside the package. The package Dbody is

specifically ngt accessable outside the package, and contains

65

o o o
e F SR SRR SN S P W S W W W S S At denin den i LI TSN W VPN R N T W PN RPN S S S

| RN

. A
. RED
bedilio de. A s 2 .2

praer

Gl

0" . 0t
. . 0
PO GU Y DY DV ST DUT T 0 W L LU

¥
i

. |

b
¥

|

L
t“
1

=

¥

e wp— -

the necessary sequence of statements relating to the package

purpose.
Packages are extremely versatile as to their possible

application, and the logical grouping of obj=cts and data

types places the definition of those objects and data types

in one location. This application greatlv enhances

maintainability. For instance, if changes become necessary

within a logical grouping, only the single package ne=2d be

-

changed thus ensuring consistency throughout the system for

any program unit calling that package.
With packages it is also possible to group iogically
tasks, and even

related program units, namely, suboprograms,

other packages. The advantage here is that the algorithms or

contents of those program units withnin a package can be

changaed (for, e.g., reasons of 2fficiency) without affacting

the program units which call the package. Packages also
allow the user to uniguely define an abstract data type and
enforce the

then encapsulate it in such a way as to

abstraction through the Ada language. Thus where a set of
data types are unique to a specific application, those Jata
types and their application can be placed within a package,

and that package will then disallow improper implementation

of those types.

66

e Bl i o R Ml i BB it

[, -
PR T O =i

-
-1

o« 2:n

P
OB, - A P

: .
hdh Al g oo b

-w

P

I -;_A'A'.L'-&_-.zu 3 s

-,

e e e ey

e TG N e i b S i e o i o i e e e e

E. DATA TYPING

The objects within the Ada language equate to tn2 nouns
we use in everyday English. Each object in Ada has a 52t of
properties which denotes the kinds of wvalues that the obiject
can carry and the operations which we can apply to that
object. This set of properties is called ths object's "type"
in Ada. The types applicable to any object in Ada must be
specifically declared within the software system as these
types do not exist implicitly within Ada as they do in other

high-order languages such as FORTRAN. Data typing within Ada

It

act that objects Of a givea fyp=2 m3y taks on only

-

has the =2E
those values that are appropriate to the tvoe and, in
addition, %ths only op=2rations that may be 2appli=2d %9 an
object are those that are specifically defined for its type.
Because of this, Ada is recognizad as a strongly tvped
language. Strong typing within Ada provides a mechanism for
imposing structure on the data manipulated within an Ada
program and, in addition, directly supports several of Ada's
r2co0gnizad Jdesign n22ds, 1iaciluding maintainabpility,
readability, reliability and reduction of complexity.

There are four intrinsic data types within the Ada
language--scalar, composite, access and private types.
Scalar types include both numeric types (including integer,
fixed point and floating point) as well as enumeration types

(which allow the programmer to assign ordered sets of

67

a o
B e S S SATEE S AL S0 SR TR SO S S SN W S S IS YU U i =

e o]

EROR i ELRAL

BTN > VI STRLIC IS IEE - WL DR DOU » 1 FOPCRIT O

i

e —— .
AT el laita s e

o T T ——— - - d
et Nl S T e i LS et oo o gn e S et b S et bos Soom e L iR) A i e e e

specific enumeration literals to be used as values ia the
program). Composite types include array types, which allow i

the collection of similar or homogeneous objects in an

:
-
{

indexed form, and record types, which allow the coliection of

potentially different or hetercgeneous objects within the (

record. Access types ara designed to nandl2 those oojacts

which are subject to dynamic change over time and even during

program execution, such as buffer space within a message- 1
passing system or geneaological records in a data base.

The last category of data typing, the private type, is
the most inventive of Ada's data tyring tools. Declarad |
. within tha package specification, the private typing of
: objects sarves to hide within the tody of the package both
ﬁ the structure of the data used to define the type and the [
x algorithms which implement the operations on that tvpe. Only

the names of the private types within a package are visible

to the users of that package. The primary benefit of »rivate .
tvpes is that they support directly th2 priancipla of
informaticn hiding wherein the details of an implementation
are suppressed in order to allow focus on the abstraction of .
i lower level modules.
B
E F. GENERIC PROGRAM UNITS p
% One potential disadvantage to Ada's strong typing rules :
? is that multiple forms of packages and subprograms may have
E to be designed in order to process objects of different T

L)

68

TRE L. Y.
]

-
W BV S aaia i T S i e S S M Er PP — PRI = Il

R

"J/l.l.l.

ot e an at e el B s e e i i T i e e i et i o e e e e e g i

types, even though the algorithms within those packages or
subprograms are identical. This is because Ada's strong
typing rules require us to specify the type of every object
at compilation time and, if the object's type does not "fit"
tne package or subprogram specification, it will be denied
entry to that package or subprogram. To deal with this
problem, Ada has as one of its tools the generic program
unit. The generic program unit serves as a "prefix" to what
would otherwise be a non-generic program unit and it allows

access to the program unit for al’ generic parameters named

in the genaric unit. The benefit of ¢pe generic program unit

is that a general purpose program can be wWwritten just once

but used many times and by different program units.

G. INPUT/QUTPUT

Embedded computer systems have a rgquirement that the
computer communicate with I/0 devices which ars oftimes
unique to that system which has usually required that
software coding be employed to sdecifically match the
computer with its I/0 devices. This coding is always tedious
and costly and almost never portable to other systams. On
the other hand, where only one type of formatted I/O is used
for a particular application, most implementations of
existing nigh-order languages will bind a huge routine
library unit that will handle virtually any Xind of formatted

I/0, whether we use those features or not. With Ada there

69

s
S e 7 LD . NP U S0 L WP NSRRI Py AP O TR SN IR N/ W BOUE NPUIE WA U U W o Wy alea

-

LS PRIIET . YRRV RO, .

= e
ey o AP

WY) SO MOTIT - PO,

Aot

2

O b4

SR B el R e A R TN e A e T R Ll S i Ty

exXists the ability to build I/0 routines for communicating
with unique devices and, wnile the routines themselves nay Dbe
tied to the devices they serve by virtue of device
unigueness, the parts making up the routines as well as those
servicing the routines, are portable. Additionally, Ada
allows for the utilization of redefined units for I/0 of
common data types which can be selected as needed without the

need for adding any new language constructs.

H. DOCUMENTATION

A significant advantage to using Ada in a sofiwar2 systan
design is that the means of documenting the struckture of the
system ultimately becomes the same means with which the
system is implemented. 1In fact, where Ada i3 used as both
the design and implementation language within a system, the
maintenance of the design dccumentation b2coma2s automatic
since such maintenance is an intagral part of the
implementation process. Thus, whereas with other design
processes the design is documented in a form wholly different
from the implementation language and thus redquires a two Dpart
effort in design maintenance or change, with Ada every change
in the Ada implementation will, in principle, update the
documentation commensurate with that change. Additionally,
since Ada is a highly structured language, it is easy to
maintain the original structure of the system while modifying

the underlying pieces.

70

.
a . B B B e S e ot I I o B DB e B B s Dt B D e Bt M 0 M B I e - A P IR P S S,

e,

-4 | I ATEES DN INALL A

N Ll
eho-9 2

-

.
LRI

L g 4
Sig b2

‘. PRl __.-_L.. SN .-:'.4..‘_‘4'_'-3 1:‘1'

. - £ . .
.'.g '_AA.A.A..A.A.A_EALA

R T N A W NI Al oo S e i o o i e o A o i : it o)
I » . . — - : =
=

| &

-

Al
-

L

«bs S
f

a

I. LIFE CYCLE ISSUES

s

Though only a very small part of the virtu2s and tools)

.T —

3

inherent in the Ada languag2 have be2n touched udon hers, 1t '

i

can be seen that the underlving philosophy behind Ada as well
as the implementation tools availabls with Ada combine to :
form a software language system that will greatly enhance the
ability to manage Ada software systems over their life
cycles. Traditionally, software developers have taken a)
restricted view of the life cycle process and hava treated ;
each phase of a system's lif2 cvcle as an independent part.
This approaczh 2as l=2ad o auaezous provlems, iaclading ﬁ

configuration control nightmares and sets of softwar= modules k

u)

that would not f£anction tog2ther. 1In tha end, tha dsveloper
would complete the systems they started, although probably F
not on time and not within budget.

Ada will not solve the software crisis by any stretch of

the imagination. It will, however, avert the transition of
that crisis into a software catastrophe if it is

expeditiously and judiciously applied to prospective and

; future software development projects. It will do this by

i allowing all levels of management and implementation to
i maintain control over the systems they are tasked to develop,
where that control today is in large part absent and sorely

needed.

T3

L Y
-)

[N

e e e e SRRSO RO RS R R R Sy S W Bl s B e . e O U U NPV LS

O e e S

3y |

T

DERE R S et e e e T T s e e B B b e L B B il e i it B Co s e o =

V.. UTILIZATION OF ADA AS A PROGRAM DESIGN LANGUAGE

A. PRESENT UNDERLYING PROBLEMS

The discussion of different private endeavors to design a
usable PDL presented in Chapter III points to a revealing and
somewhat distressing fact: there is apparently no consensus
as to what an Ada PDL should consist of or how it should be
used. For example, where the Harris PDL supports all
features of the Ada language and in fact incorporates two
additional non-Ada constructs to add <larity, the IBM PDL is
a strict subset to the formal Ada language, and the TRW and
Norden PDLs allow annotations to the Ada language Zor use as
a PDL. This lack of consensus is further ex2mplifi=2d by the
fact that at least one vendor does not coansider the acronym
"PDL" as meaning program design language (in the case of
Harris, the acronym means "process description language").

One is forced to ask under these circumstances whether
present attempts to design and construct an effective and
usable Ada PDL are approaching that end in the most effective
manner. Of course the answer to this question is that the
individual efforts, however different they may be from one
another, each have attributes which contribute positively to
th2 desired ond goal of creating an Ada PDL. It i3 not vet

known which, if any, of the mentioned vendors' designs will

72

W |

.
e nnldl S B N

i TS0 PO

-

9
WSS |

JJ..H'A.‘A'A

A

o=

St e eln e ol CNCI &
e L

T

4
b
|
,.
b

= T

B |

R R e I T

o)
®

adopted by DOD, or whether a combination of design
attributes from among several vendor designs will be adopted.
Nhat can be said about the differ=nt designs mentioned is
that thera is a common thread of asnthusiasm and suppoct among
vendors that they key elements of the Ada language directly
support the process of program design.

But enthusiasm alone does not beget a usable end product,
varticularly in the area of softwares development. The
management of a softwars developmant project is perhaps no
different than the management of other large 2nginesering

xce2t that zZh2 eond product i3 ca2ctainly less

projects,

W

tangible than, say, a bridge or a ship. An ideal situation,
and one that would greatly simplify the management of
software engineering, would be the existence of an automatic
program generation system as the ultimate PDL, but of course
the discipline of software angineering nas not yet progressed
to that point. What is needed, then, is a program design
languagz that will magkimize the mnanageapbility of any software
system development where the primary tool used in that

development is the PDL adopted.

B. AN EXAMPLE OF PDL/ADA IN PROGRAM DEVELOPMENT

Perhaps one of the most revealing studies into the
problems inherent in the design and .mplementation of a PDL
was a study conducted by General Electric and the University

of Maryland under contract with the Office of Naval Research

73

‘x . Shs
A et entatet ul

aakt ool

olen b

P

el R ENL,
‘J.l

i i

L= ol e e S

e e i ek R M e L il il e i i i S s B i B e e L Wp—y

(ONR) in 1982 [Ref. 12]. 1In this study an attempt was made
to systematically measure some of the major problems
associated with a software development project through the
vehicle of actually having a program design team develop a
mock project utilizing Ada as a PDL. Following an intensive,
month-long training program into concepts and operations of
the Ada language, a three-member program design team set out
to design a portion of a working ground support system for
communications satellites. The system was already in
existence in the programming language FORTRAN, and one intent
of the study was to compare both the time and effort in
development as well as the functionality of the end-product
program with the existing FORTRAN program.

The program development nrocess was divided into two
distinct phases. The first phase was the design phase and it
involved creating a brief description of each known component
in the system. This design phase was intended to be written
in compilable Ada, vice flowcharts or other means, and as
suct this phase encouraged the use of the entire Ada language
inventory as a PDL. The second phase involved writing a more
precise design, including specific algorithms, complete
interface specifications, the definition of all data types
and the declaration of all data objects. Following the
second phase each design component was coded in Ada resulting

in an executable software end product.

74

e S e it L A s A A P PO e — Y - sled o o o -

T i il

A R i e B B Bl It W S A O B S S et e . S S —— . s

T e SNl TR G IPL IV IS S W W SR P Iy o e

7 7'*[*17 T
et

v, r_‘r-'T -

Bir b o g ari i~ sty

Lpen s ek 4
2 T e

b e st i et i e S e e i i e i i A i AT R T i A T i i T - a AR h i i

N o3

The use of two distinct design phases was not initially
set out as a requirement in the design of this program. In
fact, at first the design team was given a free hand as to
their design style, and they began the program design process
with only one design phase intended. It was recognized
almost immediately, however, that when the primary emphasis
was to design using compilable Ada, the resulting design
evolved as increasingly detailed threads of functionality
rather than as complete descriptions of the system at each
level. That is, each team member tended to follow one
function through the various design levels, £filling in
greater detail at each lower 1level for that particular
function, rather than providing a complete description of the
system 2t each level before attempting further refinement at
lower levels. As a result of this tendency at vertical
program development vice horizontal development the two-
phased design approach was imposed, and it was with this
approach that the problem ran to completion. An additional
problem was recognized after the final program design was
completed. While the final design was judged to be a good and
workable design, it was characterized as being a highly
functional one and one very similar to the original FORTRAN
based system, even though the design team had no direct
access to the original FORTRAN design. While this may not at

first seem to indicate a fundamental problem with the final

78

KB N

2 SRR

-lalaia acsososlan 4 4

.

il e
[’ . .

P -'.x.. _—
f

.

-

T

design, it does raise two issues regarding that design. 3

o
e b

First, the design indicated a failure to take full advantage
of the design power inherent in the Ada language, and second
the question is raised as to whether an alternative design i

approach was not considered, such as Grady Booch's object

—— PPy
L e e
o e fe
A " et
. . k0RO O Ul ORSCA S
A

oriented design methodology [Ref. 3]. Although examples of

data abstraction and encapsulation were presented in the Ada

|
. -
a .
)

rv
¥

. 2 . 0 . .
- e o o .

training course, the emphasis was placed on language features

e
e

that support those ideas rather than the ideas themselves

1

during trairing. As a result of the apparent failur= to
consider alternative design approaches in this problem, the

study concluded that a more expansive training program would

PP
© 8 e a0 &

dral B0 A
.

be advisable in future programs of this nature. Such a
training program would specifically address alternative
design approaches since a choice of alternatives impacts the
initial design decisions and perhaps even the requirements

analysis phase.

.- C. MANAGEMENT ISSUES

From the discussion of underlying problems and the

example of an Ada design project presented above, it becomes

apparent that some fundamental management issues must be

9
b
P
-1
.
o
“
.
5
-4
b
3

addressed before Ada (or any other new programming language)

can be specifically implemented as a program design language. g

Some, though not all, of those issues follow.
1
-
N
b
b
3

76

N P R O S L RPN 1P S . Pt . e AR R p s o : e Seail ach b . 'm -
Y WAPSRPNSErN a ook om k. L a s 's "a. n.'a e e S ey

1. The Need for Education

The General Electric/University of Maryland study
reveals one of the most important management issues which
must be specifically and comprehensively addressed before Ada
can be adequately designed into and utilized as a PDL--the
need to re-educate designers in the Ada language. The primary
reason for this need is that virtually all of today's
programmers and program analysts were trained to understand
the conventional process oriented-design methodolegy as the
only means with which to design or vrogram computer softwar-a.
While process-oriented design is not in and of itself "bad"
design methodology (it has been the primary means of scftware
design since the onset of the computer age), it does have
limitations in its application £o program design primarily
because it focuses attention on "how" processing is taxing
place rather than on "what" is being processed. The usual
result of this focus has been that program designers have
tended to devote too much energy toward the intricacies of
the software itself while losing sight of the overall purpose
for which the software was created. Such a focus usually
results in software that is so overly complex and interdepen-
dent as to require the injection of patchwork languages just
to get the software system to work, with a resulting product
that is all but unmanageable. This is the single most iden-

tifiable cause of the present software crisis.

77

e ao s s . T L L L S G W TR PR L WL PP T ST

R T - e BEsE £ i T B gk L e~ T W T Y e g

If the tools available in Ada are to be effectively
utilized in the design of a PDL, then those responsible for
that design must be highly versed in the object-oriented
design strategy and methodology. The shift in one's thinking
away from process-orient=2d design and toward object-oriented
design requires more than a shift in method or technique; it
requires a fundamental shift in software design philosophy.
The required shift in thinking is so fundamental, in fact,
that some have argued that the untrained might be easier tc
educate in the object-oriented design methodolegv than those
already trained in process-oriented design ([Ref. 13}. There
is a clear need, then, to ensure adequate education for the
designers and users of the Ada PDL, as well as £or the users
of the language itself in applicaticns programs.

2. The Need for Standardization

Clearly the present software crisis will only be
replaced by a new software crisis if adequate controls as to
standardization are not enforced in the Ada environment.
Each of the four vendors mentioned in the SofTech study had a
unique approach as to what a PDL should do, and how to design
a PDL in the Ada language [Ref. 10: p. 3-18]. Somewhat
distressing is the fact that two of the vendors introduced
annotations to the Ada language in an attempt to create their
respective versions of an Ada PDL, which suggests the

possibility that a whole new group of branch languages might

78

R I———

| R ik i e e A Tl e S i e B i oo i R B oo i MR S

eventually evolve from the present Ada language. On2 of the
basic precepts to the creation of the Ada languags was Lo
discourage such branching in an effort to maintain]
manageability and maintainability cf Ada software. |

In designing an Ada PDL or any other Ada based
software, it is imperative that we not lose sight of the
original intent of the language as put forth by the HOLWG--
that or maintaining standardization of the language's
application. Some diversion from the original language may
be necessary in order that a workable =2a0d product b2
developed, but that diversion should at 2ll costs be Xapt oo
a minimam,

3. The Need for Horizontal Vice Vertical Design

Ada has been described as an ideal tool in the design

of both program design languages ({(PDLs) and system design]
languages (SDLs) [Ref. 1l4]. wWhere a PDL describes now each 5

component in the software system is to be constructed 1

(inciuding control flow), an SDL description shows what
=3 components need to be constructed and what intarfaces each

{ component provides and ra23quires. Thae two f2atures of Ada

bt Bl oo o e

which distinguish it from other languages and which make it

an ideal program and system design tool are that it is an

|
a:

object-oriented 1language and that all packages and

£ subprograms are broken down into specifications and bodies,

it b e geaals

each of which are separately compilable.

o
B
.
ia

79

[DT RN D — R NP YN W

4 3
. . ,
[S S L. S S IO PR . - — e S D D S AP Wi TP S S SR S SR S PO

T W —— v >
e o = g s o R i A it S e e & st e T ————tTY T w T v g

& d i
b

The beauties of an object-oriented design structure

£
4
4
«
4
e
°
-

T

have already been touched upon--they discourage designers

o

ey
0

v
.

from getting "lost" in the intricacies of the solution space

a0

e te

Y
-1

while forgetting the purpose for which the software system
was created in the first place. The primary beauty of

separate compilability between specifications and bodies is

o 1"
O ‘
. Y ol

that it allows tne emphasis to be placed on horizontal

|
”

development within a system or component prior to the need
for vertical development within that system or component. By

horizontal development, it is meant that all elements or

. 2 w.‘r‘Y."."l' .l' ’c'

components existing within a certain level of heirarchical

v aete

structure could be specified and developed as needed within

i o e ol i
el

that level of heirarchical structure prior to the need for
developing other lower 1level components and structures. The
fact that package and subprogram specifications and bodies

can be separately compiled allows a tremendous amount of

design freedom as well as a true simultaneous top~down-

bottom-up design that enforces a modular and component

PR

discipline on the system designer and system implementer. It

also allows a system designer to remain within the confines

saliadad

s

of the heirarchical level in which he was tasked to design

e et

without being overly concerned with the implementation

details of a lower level upon which his heirarchical level

will ultimately dJdepend. An example of where separate

s

ot .
B A

compilability of program specifications and bodies can be

bl

80

DS - L)

T va'v'

B S i i e e s R i S B i i e T B e i i S e e e b e o e o

used is in the process of prototyping; where a simple and
very high level system structure could be designed using
program specifications as 'stubs' in place of the called
program units. In this way the correctness and completeness
of the initial design structure could be verified through
compilation at a vary earlv state in design and with a mini-
mal investment of effort or time. Whether used in prototyping
or other design strategies, the separate compilability fea-
ture of Ada is in direct support of the softwars engineering
principles of abstraction and information hiding, and further
directly supports neirarchical design methodclogi=s.

As revealed in the General Electric/University of
Maryland study, however, the Ada language in and of itself
will not svecifically prohipbit non-conformance with a
heirarchical design structure; it only encourages its use.
The enforcement of heirarchical design must in the end be
considered an essentially human endeavor, and pernaps the
most valuable tool to use in this endszavor is that of
structured walkthroughs during each phase of program or
system development. Thus at any level of heirarchical
design, the specifications of panckages and subprograms within
that level could be developed horizontally until the entire
level was complete, after which that level could undergo the
process of structured walkthroughs and specification

compilation within that 1level. InNly ALeLEE it was

81

| (A0 Rl b

* .
BA A

Y

) FIREE N

-
-

o I M

™.

~ S Y YOS DN e

—
lv . o
e
et
mee

s
.

Yl
LIPSLIPR

:
*
|4
h'
|8
.4

| A Juk St g
gL e T
13 4 s

Ly ““.‘.T'n\ S S AT
i o i e . g v
o o LR a 5 &,

e

LR A B o
il | 1

e i i B e e e S e e b 0 e e i T T

L 4

o . o E . . R i . clad) =

demonstrated that the level was complete and operable as to
the various operations occurring within that level would the
element of vertical development take place. That is to say,
after it has been determined that the specifications within
the present level of development are complete and operable,
the program bodies belonging to each compiled program
specification could then be developed. Of course once the
vertical boundary between specification and body was crossed
(2 new level of heirarchical structure entered), the
horizontal development requirement would have to be re-
imposed within that new 1level, and the process of
development, walkthroughs and compilation of program btodies
(and specifications of even lower level program units called
as a result of those bodias), would begin anew. This
iterative process would continue in a horizontal-vertical-
horizontal fashion until the entire system was complete.
Regardless of whether Ada is utilized as a PDL or as an SDL,
the need to employ this iterative, vertical-horizontal-
vertical technique remains if the true value of Ada‘'s
features are to be realized in system design.

4. The Need for Support of Software Principles

In the design of any software system or of a PDL or
SDL for utilization in the design of software systems, the
fact remains that the software engineering principles of

abstraction, information hiding, modularity, localization,

82

R

ORI U Rl e /2 P A e
g '
8.

W

" ad e gl o e

. . i < a oo

e 0,0
S

s %y

A) S0 Sn a0 o 4 y
AT)

LA & alia e re oy & R A R
o, !]

. g =
a »

.

F."T WY1 '..'
®

g i
=

e P — i TR e el e e s o L 5 T

uniformity, completeness and confirmability must be
maintained. Since it is people and not machines or languages
that ultimately perform the process of software design,
regardless of the programming or design language used, it is
incumbent upon the people involved in system design, to
ensure that these principles are continually enforced. As
such, the enforcement of these principles is a management
issue and not a language design issue.

The use of Ada as a PDL or SDL is not, after all, a
d2sign methodology in and of itself, but rather simply a
metnod DY which design can be represented. Put another way,
Ada as a PDL is a concise and meaningful way to put down what
is in the mind of the designer,but it will not by itsel:Z
perform the design process. Ada will, hcwever, greatly
enhance the design process by virtue of the fact that it,
more than any other language available, directly supports the

software principles mentioned above.

D. LANGUAGE DESIGN ISSUES.

In addition to the management issues mentioned here,
which are in effect applicable to the design of any software
system, PDL or SDL, regardless of language implementation,
there are specific language design issues which must be
addressed prior to incorporating the Ada language into a
specific SDL or PDL. At present there exists no single Ada

based SDL or PDL as the accepted design within the DOD.

83

S Sl

e
P
Y

=
;

L e
.
)

A -'-m'. T 7
. .
DO Uk

B —
e NE

b-
r

Sk ik R AT G- SRR
= i -~

T
- § e

v
i

i ‘7\~vl:.‘_ D T e ——— S -l s i s e S . — T i i T T i T T T i T T

W T

However, as mentioned in Chapter III, a number of ongoing
development projects are underway under the auspices of DOD
contract. While the projects diff2r in varying degrees as to
language specifics, the approaches takena by the diffarent
vendors involved are quite similar. All, for instance, make
use of the major Ada language tLeatures, though each makes use
of those features at varying levels of implementation and
effect.

In attempting to examine which Ada based PDL the DOD
should ultimately adopt for use, it is appropriate to
consider the necessary and desired features to include in
that PDL, as well as the support environment within which the
PDL will exist. The remainder of this chapter will be
devoted to an examination of these features.

1. An Ada PDL Should be Applications Flexible

An Ada PDL should bve versatile enough so as to allow
its application at all levels of program design and
development, regardless of program type or coding language.
Tor example, if a design team is utilizing an Ada PDL in the
design of a complex missile launch and guidances system, the
use of the Ada PDL tool should not be constrained to any
particular level or group of levels n the design aneirarchy,
but should instead be design-~level independent. As such it
should allow short-iteration prototyping at the highest

levels of design while simultaneously supporting design of

84

¢
N

£ a. US4 Y

L
TRt

s
i

v

s e

o R T ekl O G CSdy “\ . W=

e e i T ey, e o L 55 o . i

the system's lowest level modules. Only with such dasign
level independence will the Ada PDL allow true top-down-
bottom-up system and module design.

2. An Ada PDL Should Not Subset the Ada Languace

By this it is meant that an Ada based PDL should
recognize the entire Ada syntax, rather than a subset of that
syntax. The reason for this iz that an Ada PDL which subsets

the Ada language serves to rescrict the available use of that

r

.
n

1]

language to the extent that the PDL is subsetted. 1In

(3

same manner in which a person who relies solely on a pocke
dictionary of the Englisn language denies hims2lf of many of
the rich English words and constructs available in a2 more
comprehensive dictionary, an Ada PDL which subse*s the Ada
language denies its users of some of the richness available

in the Ada language.

3. An Ada PDL Should Include English Narratives

One major difference between most PDL's and high-
level languages is that the PDL's use narrative text embedded
directly within their statements. The purpose of this
narrative text is to enhance understandability of both the
individual statements and the design language as a whole.
Another benefit is that since each PDL statement can be
explicitly described to the user via a standardized narrative
text format, there is far less confusion as to the purpose

and intent of each PDL statement. The enforcad

Ty Ty g ——r— T Vi, v ——

T D I T D L PP Ao B RS BN A AR LI s s 0. ..

PR NP P S I T S

P

o e

r—_v T T Y T T T W T Y g P =W W o= ~ B e e T S e e e
- ER . . . : . g e

X r-" d'_.v v

| &3

standardization serves to enhance the maintainability and

. transportability of hoth the PDL language itself, and the
software systems and modules whose designs are a product of
the PDL.

h‘ The use of English narratives serves also to

1
|
WERER o ¢ PWITY W Uiy W D IR i GO Y I LN L.J.A.Lj

encourage abstraction, the omission of implementation details

L e i

SRR MO o =
-[‘. SEAED
e a0y

where those details are unimportant to the present

heirarchical level being designed. For example, if a
prototypne system were being designed using an Ada PDL, onliy
the specifications to those program units being called by the

prototype nead be identified, with the associate2d program

unit bYodies being described only 32a2rally withia the

LA

T '-.gw'-
. ., L

S g
.
»

a

)

narrative text attached to the specifications. When the

orototypoe was complete, it could then be compiled and checked

A
LED=

-) for completeness and correctness as to the prototype alone

and without regard for lower level implementation details.
Once verified as complete and correct, those lower level
details could be addressed, using the narrative text as a

starting point. In this way, narrative text provides an

effective vehicle with which to iteratively progra2ss from a
high level design to succeedingly more detailed program
descriptions 2xisting at lower 1levels in the system's

heirarchy.

s

Unlike most other PDL's, an Ada bhased PDL allows the

simple and safe inclusion of English narrative text without

I e s’

86

¥ R T T Eod T B

e

)
T P ey wny |

L. effecting compilability of the PDL or its statements. As
such, it is most important that an Ada PDL include extensive
use of narrative text, and that that narrative text encourage
ii abstract design level description rather than detailed
& coding.

4. An Ada PDL Should Allow Annotations

An Ada PDL should include a mechanism for expressing
annotations which extend the Ada language in its application
E“d to a PDL. A primary purpose of annotations is to allow the
= expansion of Ada's KEYWORD dictionary so as to better match
that dictionary to the particular needs of the PDL
application. Annotations would best be used to provide
qI additional design information or to impose requirements cn
' the designer, such as specialized forms of Ada comaents. It

is not suggested that a specific set of annotations be

adopted, but rather that a standard mechanism be identified

to indicate annotations and that the use of annotations be
encouraged in program design. The placement of specific 3
annotations could be required to occur as a preamble to a
design module or to precede particular PDL statements where 1
appropriate. In addition to a standard means with which to 1
express annotations within the PDL, a common Ada PDL
processor which recognizes the annotation format and calls

appropriate subroutines could be designed so as to ease the

s aAd ac g _pat A ahly

expandability of the annotation inventory.

A

87

it

r‘, SO A SRS SRR e il it a5 i S SN IS iai Ai Si Aaih f Fad Snit S S e e Jnt e S e B e et e Ja e eSS i e —

cif b
e

S o
s

‘l
"

-

4

—
-7
s

There is of course a danger in the uncheaecked

™7
i

- expansion of an Ada PDL through the use of annotations in

that without some control, the PDL to which those annotations
are added can become overly complex and ultimatelv i
unmanageable. Thus whereas annotations would provide a

valuable tool in the flexibility of an Ada based PDL, their

Dk B R . s ar ¥
. . LR
ese O\ B0MG =0 g0
TR] N N]
. . PR,

rr v ":’.WT")
OO N
Lonlm aine Fs B o ABA

L P "antaal’s . ssmamm @ A

use should be judiciously controlled.

5. An Ada PDL Should be Supported by Automated Tools

.

One of the most valuable elements to be included in
iy the Ada PDL environmant would ve that of an extensive
F’ automated tool inventory to assist in error-checxing, design l
formatting and design editing. The Minimal Ada Programming i

Support Environment (MAPSE), as defined by the STONEMAN

document, suggasted’ thak ~artaia tonls be included in the Ada

Gdd o d e I 8" "

language support inventory text editor, compiler and linker.
As a minimum requirement to the Ada PDL support environment :
there should be an Ada compiler so as to ensure proper usage
of the Ada language and minimize CPU time investment during
program design. A PDL processor would be preferred over a
compiler since it would allow the processing of annotations

as well as the checking of errors in such a way as to raport

rhodonbod i o dBE Ra 5o

those 2rrors in a manner compatible with design rather than

Rl s

implementation. Examples of errors that would be reported

with a PDL processor are undefined subprograms or variables

appearing in the program design. A third valuable tool would

.Y <
0

SR O I LY

88

R i W‘:'_Y

-
.

e

[N PP T O R R

T T S i, SR aat e i E ol el i o RN R i T T = - ——— ————— g
s : e i k) e il o R e i f i o o T e RS

ol Gl e
-
-—

-
.

be that of an Ada PDL text editor, where the purposes 0f such
an editor would specifically be to encourage design rather)

than code in developing Ada PDL descriptions. g

Another tool that could be of considerable value in

. v .
e h A bad

the management of program design would be a graphics
jenerator capable of generating data flow diagrams (DFD's;,

input-processing-output (IP0O) charts, and flowcharts directly

i Sl LAAA) axd
.4 ARt ANy s TEYE Ty 77
d kA L Sis)
" Y

| TN

3 from the program being designed. While such a tool would

perhaps need to be quite complex in order to perform the

o o o -
¥ Y SR

function of creating graphics directly from program code, the

[:¢ :

benefits possible £from naving automatically Jesnerata:

P
—
A

pictorial representations of programs under design are

substantial. There is, for instance, perhaps no petter way

to convey the structure and purpose of a complex software 1S

<
.
4
E
- o
5
F

program from one human being to another than through the

vehicle of DFD's and IPO charts representing :that program.

An additional benefit of having an automatic dgraphics
Jenerator would be the ability to 'stand back' and view a
jdraphical representation of the systam under design at any
desired point in time. Such a feature would €further
contribute to the proper placement of emphasis on the
management of program design over the concern for

implementation details, thereby helping to maintain control

over the design process.

89 g

.

et L PR T NP LA =
A e T = s e L SN TR WS GRDS BSOS SRS S SR, SO e wdm -.1

RN ']
|
q
|

R
't 0 S
o A S

(3
L

A
3

L R R A T P O R L I i R i T R i il et e e

Regardless of which of the automated tools mention=24
are developed for use with an Ada PDL, the Ada laaguage is
unique in its ability to support such tools once they are
developed. The reasons for this lie primarily in Ada's
strong typing and ability to support separate compilability
of program unit specifications and bodies. Since all objects
in Ada are explicitly defined and all interfaces specified,
the task of creating a program structure and then checking
that structure for completeness and correctness 1is
significantly simplified, whether that task is Dderformed
manually or by machine.

6. An Ada PDL Should be Well Documented

Adequate documentation is 2 necessary element to any
PDL, and an Ada based PDL is no exception. Documentation in
the case of an Ada PDL should include a reguireamants
document, an Ada PDL reference manual, an Ada PDL users guide
and an Ada PDL processor users manual. These documents will
be needed to establish a philosophy of Ada PDL usage and will
be necessary for prover use of the Ada PDL. In addition they
Wwill serve to promote the wide-spresad use of the Ada PDL for
program design.

An additional form of documentation exists in the
narrative text section of appropriate Ada statements, in that
this narrative text serves in part to explain to the user the

function and purpose of the associated Ada statement. 1In

90

et e s i Bl Bt B Bon B Dre in B tim La f

.

3
)
1

4 TR e

aba

L
Gl s L

P S

T

. -
.‘.jl"'.

v 8 ¢« ¥ T
a et

S e

SRR - I AR
UL 1M) X

w

IS -
K -l

-
.

=

v

this sense Ada is a self-documenting language, and the
advantages possiole through this self~documenting f=2ature
cannot be overstated. 1If, for example, a program designer
using an Ada PDL was unsutre as to the function of any
particular statement within the PDL, he should be abla Lo

determine that function almost immadiately siapiv by c=2aidiag
the narrative text attached to the statement. 1If he wera
still unsure, he could then consult the appropriata extarnal
publication, though such external consultation should be

unnecessary i1f the tool of narrative taxt is exploited fully

py the designers of the Ada PDL.

91

. .’ 4 o »
B e L PP L U LY S . SO - U SO R R G U S R -

3

PUYY vd

|

LGRS SONPILILI PO S . I,

YT S e T e e T S e i S A P SR i e eSSl B el Sl A g s SadhBd nac e d i ik Do e e n ae oo s]
. oo . . L St 3 I -

B
4 O
S S

.
-

¢

L
3

VI. CONCLUSIONS AND RECOMMENDATIONS

Caith s i T
.-n’
. o
-
w |

A. CONCLUSIONS

- |

Parhaps the single most important contributing factor to

S the present software crisis has been the failure on the part

r

YTy

of softwara programmers and program designers to maintain a

=

proper persvective on the need for management of the software

e AL

projects they are tasked to accomplish. This failure is in

[47]

oart due to the fact that inadegjuate managems=at styla na

been the rule rather than the exception, regardless of tha2

4
[
1
software projact involved or d2sign language used; and in i
part due to the fact that, until Ada,; %there has been no

T Vv
A RO s R

et

"

simply by virtue of language design.)
The intent of this thesis has bz2en first to explore the

jgenesis of the present software crisis, to explora the

SOy W

various tools available in the Ada language which could be

language that tended to encourage a prover management style 1
used to help avert future crises in software development, and i

lastly to address the applicability of the Ada language to q

DEENDMTR AL & 4 AU

its specific role as a program design language. It can be ',

concluded from the points raised in this th2sis that Ada is a

Shad & B see
-

far better candidate for implementation as a PDL than any

other language presently in existence, and that the DOD

w
[8]

> e v- o
E = :
.
e : .
A.AA—‘.A.EM'_A_'...'__._L.'_.EL.‘AA-L.A.‘A.AE

L‘“"‘-“—ﬂ--—l'An»A‘A L e . T Tl SV i P S T, - Bm -

.3
3
i
]

AT e Y

Tv'v'-v- -
R B 3
.
.
D

4

shift in

p

P:::

b : S !

B should place a very high priority on the dasign and
%a implementation of the Ada language as a PDL.

k-

? Another important conclusion that can o0e drawn from the
B

i

points raised in this thesis is that a definite
management policy and procedures must take place before the
software crisis can be totally overcome. That is, management
must shift its philosophy away from the perspective wher=
piecemeal vertical software design and nairitenance i3
tolerated; toward the perspective where comprehansive and

horizontal design management i3 2nforced.

3. RECOMMENDATIONS FOR FOLLOW-ON WORK

The authors recommend research e conducted at the Naval
Postgraduate School in the following areas:
~ Research the atility of iaplaameating Ada as a Zanjiage
for use in software design at the Naval Postgraduate
School.
- Utilization of Ada as a design language for use 1in
embedded weapons systems such as Harpoon and Tomahawk.
-~ Continue research into use of Ada PDL as a compilable or

non-compilable design language.

i 93

- O
L 2 . ”
P W v SR S Al - 2 -

goec. W B SRS RS ..o |

R BN s o

|~ P APARST . . [ATy, . gk

FAR e

alo g’

il

| T

v~ pRarare
- |

APPENDIX A |

i)
1" .

GLOSSARY .

P
i)

!l ABSTRACTION: The process of viewing a problem at a level
‘ of generalization where that level of generalization does not
consider irrelevant lower level details. Abstraction can be
E‘ likened to a "black box", where the person using or viewing
the black box is concerned only with the functions of the
black box as a whole and is not concerned with the elements
r maxing up the box. The use of abstraction allows ona to view

concepts and terms in the problem environment without having

X : to transform them to the more detailed and less familiar
solution environment.

ABSTRACT INTERFACE: Allows inputs into or outputs from a
module to match changes in inputs or outputs so as only to
effect the abstract interface code and not lower level code

within the module.

ACCESS TYPE: A type whose objects are created by
execution of an allocator. An access value designates such L
an object.

BODY: A program unit defining the execution of a

TORER | o, O Tl

subprogram, package or task. A body stub is a replacement
for a body that is compiled separately.
i; BUBBLE DIAGRAM: See Data Flow Diagram (DFD). i
{ 2
- 1
1
1
k 94 1
4 1
- [
b

e el ._p - N L R T ¥ 0 4 W S TR R T T R Y VU S . TR e \L.h‘.L_J

iy

3 oy

|
+°5 %y

PR

L SSLAR ant e sa o g o
" s

:2‘—-. ,-':';,—m‘- + ,-..—;A-Y"_ T
. I3 h o +

W T

M A T T Wik i ol i St et i i e i B G e e e o e e e e o e

CHARACTER: Any of the ASCII symbols that are used to
form source Ada programs or are used as data. Graphic
characters have a visible representation, while control
characters have visible attributes that are implementation
defined. Source programs are huilt from the graphic
characters plus control characters which designate passage to
a new line.

COLLECTION: The entire set of allocated objects of an
access type.

CORRECTNESS: A program 1is correct if it performs
properly the functions it was intended (specified) to do and
has no unwanted side effects.

COMPILATION UNIT: A program unit presented for
compilation as an independent Ltext. Iz is preceded by a
context specification which names the other compilation units
on which it depends. A compilation unit may be the
specification or body of a subprogram or package, including
generic units or subunits.

CONTEXT SPECIFPICATION: Prefixed to a compilation unit,
defines the other compilation units upon which it depends.

CONVERSION: The process of translating from one type to
amother.

COUPLING: A measure of the relative independence among

modules.

95

i Tt e e I G el e i e e R T L L L

L
O S T J

e e i 8.

rea sl A% "m e AN AaS A osnde &,

POUDUPYEY - W TN PO

O SO T I)

Calt N Bk d o

ek

PN Y e O UV I P W

fD-A122 244 UTILIZATION OF ADA AS A PROGRAM DESIGN LANGUAGECU) 2/2
NAVAL_POSTGRRDUATE SCHOOL WONTEREY CA G J WYLIE ET AL
JUN

UNCLASSIFIED F/G 9/2

P

-

i B i 8- e

-

S

3

b, s

m 2‘ Oﬁ
LLLL

d m—m_m_m_mutm
%)

|
I

THNT$v P ey -
..-h.-unl.'n AMSP Y L9 P P S Tl 5 roer e

.'.V

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

.naun»v-r

s . St

P 2

-

| S T R T i i T T i S e T T i i - vl S B T O S i i T A s S - R e e e e e e B e Tk Jhalt S St S
. . . g i o g
= = . . o

ey
". .C -

e e, T,
SOOI
Y

DATA FLOW DIAGRAM (DFD): A graphical tool used to depict

I

data (information) flow within a system and between modules.
DECLARATION: Associates an identifier with a declared

entity, including objects, types, subprograms, tasks, renamed

entities, numbers, subtypes, packages, exceptions, and

generic units.

DEBUG: The process of detecting and correcting errors in
a procedure, system, process or module.

DECLARATIVE PART: A sequence of declarations and related

information such as subprogram bodies and representation
specifications that apply over a region of program text.

DERIVED TYPE: A type whose operations and values are
taken from those of an existing type. The existing type is
called the parent type.

DISCRETE TYPE: A type with an ordered set of distinct
values. The discrete types are the enumeration and integer
types. Discrete types may be used for indexing and iteration
and for choices in case statements and record variants.

EMBEDDED COMPUTER SYSTEM: A computer system that forms
part of a larger system whose purpose is not primarily
computational, such as a weapons system or process controller.

EMBEDDED PROGRAM: A computer program that is part of
some larger entity and essential to the proper operation of

that entity. For example, the program which serves to

96

o
i . . . 5
PSS S A TR A SO SR R ~
—— A e e A af ot e tas ..

R A0 SN 8 b) T s B W B WD 0 S i - v+ . A o A -

o m——

g T

...........

identify different aircraft in flight is embedded within the
air traffic control system.

ENTITY: Anything that can be named or deno*ted in a
program. Objects, types, values and program units are all
entities.

ENTRY: Used for communication between tasks.
Externally, an entry is called just as a subprogram is
called.

ENUMERATION TYPE: A discrete type whose values are given
explicitly in the type declaration. These values may be
either identifiers or character literals which are considered
enumeration literals.

EXCEPTION: An event that causes suspension of normal
program execution. An exception handler is a piece of
program text which specifies a response to the exception and
the execution of such a program text is called handling the
exception.

BEXECUTB: To carry out an instruction or to perform a
routine or set of routines.

EXPRBSSION: Part of a program that computes a value.

FLOWCHART: A graphical tool used to show sequence and
control of program or module logic.

FPUNCTION: The name given to one or more statements that

perform a specific task.

97

i
|

.t ENE .-

R S NSNSy ¥ N S SN N)

TR e’ ®oa® u” a”

T PR I B R B

R i e e e e S e e Bt e e et ek el e et e —- - - ._1

)
4
—

F
- .,

E GENERIC PROGRAM UNIT: A subprogram or package specified
;! . with a generic part. A generic clause contains the
t declaration of deneric parameters, which may be types,
:, subprograms or objects. In the generic specification these
!- are called generic formal paramete.s. When the unit is
instantiated the formal parameters are matched with the

actual parameters. A generic program unit may be thought of

1
]
|
y
]
]
J

as a possibly parameterized model of program units.
Instantiated program units define subprograms and packages
that can be used directly in a program.

IDENTIFPIER: One of the basic lexical elements of the

language. An identifier is used as the name of an entity or

a reserved word.

INFORMATION HIDING: Specification and design of mcdules
such that information (procedures and data) contained within
a module are inaccessible to other modules which have no need

to know the information.

INTERFACE: Communication between modules governed by a ?
set of assumptions one module makes about another.]
LEXICAL UNIT: One of the basic syntactical elements %
making up a program. A lexical unit is an identifier, a

number, a character literal, a string, a delimiter or a

k. J- A.‘

comment.
LIBRARY UNIT: A compilation unit that is not a subunit

of another unit and which belong to a program library.

S s

Aobos

98

o

.'l

o]

Pe

v

b
L.A-—A-A—A—IRA-«' 1

......
PP, SR Pl P R Py S PP P O Mgy =

Tt i ancadon B Da Bn en s i P Ven i Nen Poa ® n T om N Sm o

Pt T TR Tt Sl Tae 1
B el e e b Tw

e

-
v
-
"
-~

&
e

3

bt

,.,.."7-; -F

AR e 22 L E Lo g

SPRR 4

SN

RO~ Y

»u

» “i 2

-
™

Sk e e Bt S S G b BB L 6 e i o . R L b b L L e il i Cte Biads T 2han aai medi e as ol oo oo SRR

MAINTENANCE: The phase in a system's life cycle
following development, acceptance and installation.

MODULE: A separately addressable element within a
program.

MODULAR DESIGN: A logical partitioning of software into
elements that perform specific functions or subfunctions.

OBJECT: A variable or constant. An object can denote
any kind of data element, whether a scalar value, a composite
value, or a value in access type.

PACKAGE: A program unit specifvying a collection of
related entities such as constants, variables, types, and
subprograms. The visible part of a package contains the
entities which may be used from outside the package; while
the oprivate par:t contains structural details that are
irrelevant to the user of the package but complete the
specification of the visible entities. The package body
contains the implementation of subprograms or tasks (possibly
other packéges) specified in the visible part,

PARAMETER: One of the named entities associated with a
subprogram, entry, or generic program unit. A formal para-
meter is an identifier used to denote the named entity in the
unit body. An actual parameter is the particular entity
associated with the corresponding formal parameter in a sub-

program call, entry call, or generic instantiation.

99

il e ol S

i e, 70 D Bl ! i M S ol oy B 5.

i PN it . S 0 A Mt

Yy reeve
...‘ P
o .

Yo
1N

T N

[Nl o 8 e ol Sh g
. e
L

1>~ 0

et B B B B e Tstirs Dttt i S sttt et it B R s A R S e e B 2 S S oo S Som Toe T T e Som Taet Taw Sab Soa tume Taw Suv Toe i

PRIVATE TYPE: A type whose structure and set of values
are clearly defined but not known to the user of the type. A
private type and its applicable operations are defined in the
visible part of the package.

PROGRAM LIBRARY: Part of the Ada program support
environment data base recognized by the Ada compiler,
consisting of a collection of compilation units.

PROGRAM UNIT: Any of the three primary structures making
up an Ada system; namely, subbrograms,.packages and tasks.

RANGE: A contiguous set of values of scalar type. A
range is specified by giving the lower and upper bounds for
the values.

RENDEZVOUS: The interaction that occurs between two
parallel tasks when cne %ask has callad the antzy of the
other task and a corresponding accept statement is being
executed by the other task on behalf of the calling.task.

REQUIREMENTS ANALYSIS: The third step in the software
engineering procedure and the last step of the planning
phase. Describes the software by identifying the interface
details and an in-depth description of functions; determining
design constraints and defining software validation
requirements.

ROBUSTNESS: The ability of a program or software system

to handle unforeseen environmental changes (such as hardware

100

A R S S A T S S T Tl T S B i B

']

4

[

A Nl PO DREe -

Rasisaassiansan

~
ot

WL SOV AN

j

BN PR MIONE WOWLER 5 T RO TR WM .

2 W COACTAOA

RN Tl

damP,

i T L -
i i e A A e i s = i i S Mt e o
A e , .

failure) and demands (such as data) in a "graceful" or
reasonable fashion.

SCALAR TYPES: A type whose values have no components.
Scalar types comprise discrete types (enumeratiorn and integer
types) and real types.

SOPTWARE ENGINEEBRING: Software implementation of a
problem solution approached by using a set of techniques that
are application independent. These techniques are: (1) a
well-defined methodology that addresses a software life cycle
of planning, development and maintenance; (2) an established
set of software components that documents each step in the
life cvcle and shows traceability from step to step; and (3)
a set of predictable milestones that can be reviewed at
reqular intervals throughcut the scoftwarz2 1life cycle.

SOFTWARE PLAN: The second step in the software
engineering process. Provides a framework enabling the
manager to make reasonable estimates of resources, cost and
schedule.

STATEMENT: As opposed to a declaration which defines an
entity, the execution of a statement causes some action to be
performed.

SUBPROGRAM: An executable program unit, possibly with
parameters for communication with its point of call. A
subprogram declaration specifies the name of the subprogram

and its parameters; a subprogram body specifies 1its

101

5 .
- - - *
D e oy e S LY = SIP L SE SRPL IR, WA Wi, S NEN U S ST S TEoRC St SO U S S SR = r - -

elatal T fa

| S LY g]

<

"

el

2.

- GG

=

VR o SOTETENRIRAIIY & NP RICT WREANT ~ & I

1
1
4
J
d
4
4
)
{

o SO MTSEEED T

-

A O s - . - 3 22 ’
. - . LA . 2 -
s L B SV PO TR TOR S T W i P WP S S, i L U WO

execution. A subprogram may be a procedure which performs an
action or a function which returns a result.

SYSTEM: A collection of elements related in a way that
allows accomplishment of some tangible objective.

SYSTEM DEFINITION: First step in the software planning
phase where attention is focused on the system as a whole.
Functions are allocated as to hardware, software, and other
system elements based on a preliminary understanding of
system requirements.

TASK: A program unit that may operate in parallel with
other program units. A task specification establishes the
name of the taskx and the names and parameters of its
entities, while a task body defines its execution. A task
type is a specification that permits the subsegquent
declaration of any number of similar tasks. A task is said
to depend upon the unit in which it is declared (subprogram
body, task body or library package body). A unit is not left
until dependent tasks are terminated. A task is completed if
it is waiting at the end of its body for any dependent tasks
or is aborted but not yet terminated. A completed task
cannot be called. A terminated task is, in a sense, the same
as a dead task (it is no longer active).

TYPE: Characterizes a set of values and a set of
operations applicable to those values. A type definition is a

language construct introducing a new, unique type, whereas a

102

= S D L S T e T T = ol

‘|

-
...-

. > e g n. - Loy xs . .
USSP RE B - ISreP ST C ST IEINDE 1~ S

b e e . Ty TN ey e Chhk e e e TR il i]

subtype creates a compatible (possibly) constrained
Jdefinition of the base type. A type declaration associates a
name with a type introduced by a type definition.
VISIBILITY: At a given point in the program text, he
declaration of an entity with a certain identifier is said to
be visible if the entity has an acceptable meaning for an

occurrance at the point of the identifier.

103

- . ™ . 2 * . - . .
Bbnbmbamia e e L WET L b] . A
. - . s twialab il alalalal som o a o lal ol e Ao _

T

]

LPLFEIEDSS 1 TIPS IEULITIR © 3 RORORTeL,

Sbiacas el ot

P S

o*

DR V-3 U 5 Ty S Ty e)

T AP ON B B S S |

r B

APSE

DARPA

DFD
HARRIS/PDL
HOLWG
KAPSE
MAPSE

ONR

PDL

RFP

SDL

APPENDIX B

ACRONYMS AND ABBREVIATIONS

Ada Program Support Environment

Defense Advanced Research Projects Agency
Data Flow Diagram

Process Description Language

High Order Language Working Group

Kernel Ada Program Support Environment
Minimal Ada Program Support Environment
Office cf Naval Research

Program Design Language

Request for Proposal

System Design Language

104

R SR S h M h St 2os o B aan oo oy
4 T

P ot TR ?..-.t-’_j

s
E
.1

=

&
"4
1
-

tas oIS A2

P WO G T S BET I (- I T WY D X

—aag

%

L i g el e s e e L S e S A R

APPENDIX C

PDL VS. ADA COMPARISON

Language Features

Commentary:
Comments:

Pragma:

Declarations:
Types

Scalar Types:
Array Types:
Record Types
Access Tyres:
Private Types:
Derived Types:
Sub Types:
Limited Private:

Object Declarations:
Simple Declarations:
Array Declarations:

Discriminants and Variants:

Names & Expressions
Attributes:
Slices:
Aggregates:
Expressions:
Type Conversions:
Qualified Expressions:
Overloading Opertors:
Allocators:

Statements:
Label:
Assignment:
If (ELSE-ELSIF):
Case:
Loop:
While:
For:
Blocks:

HARRIS TRW IBM

E T I - S
T I
g S S i S

]
"
e

T i i
Ea - I 2 i S
I D9 DS D¢ D4 26 28 <

v B S i i S
E i S -
Ko X |

ST S N Y MR P TN BN TN D N SORG B N RO et B B BEE. R R St PO S B L LI PR O

NORDEN

o T B S

g - I B

PR LS XX

N e

"

- N SO OO

sl pte

P ————
R e o i

Lo Sl

. o
ot -

......

Exit:
Return:
Goto:
Null:

Subprograms:
Procedures:
Procedure Call:
Functions:
Function Call:
Positional Parameters:
Named Parameters:

Packages:
Specification:
Body:

Visibilitv:
Use:
Rename:

Tasking:
Task Types:
Entry:
Accept:
Delay:
Selective Wait:
Conditional Entry Call:
Timed Entry Call:
Abort:

Program Structure:
Compilation Units:
Subunits:

With:

Exceptions:
Handlers:
Raise:
Suppress Pragma:

Generics:
Subprogram:
Packages:
Instantiation:

...........

106

HARRIS

XK LX R

KPR

o

i - i S i -

oS 6

i

rT———

TRW

> ol ol I 28 2K ¢ »E ™ X > [T I I > X K

-

P PO

S I e R i §

IBM

oS K XS K Wl X'

o]

-

e

........

NCRDEN

el o

] i i e e e

el Rl R R |

Eale] XX

T

ORI PRSP

L e s T W PP VAP S DY 7 I Ry e S e

;
«
HARRIS TRW IBM NORDEN _.]
» Representation: "
Length: X - - - X
Enumeration: X - - - 9
Record: X - - =
Address: X = - = 3
Machine Code Insertion: X - - = r
I/0:]
Package Input-Output: X - - -
Package Text-I0: X - - = §
Get: X = = = i
Put: X - - = F
Read: X - - - 'ﬁ
Write: X - - - -
Package Low-level-ID: X - - - -
Send-Control: X - - = 1
Receive-Control: X - - - 3
1
1

<

Supported
: Not Supported
Partially Supported

"

; ‘.Aj- 3 l‘.l.) " '-‘

107

J l..“_c.w‘u'-‘.J:JH

[P

N e T B, Se RAERUE ol VW N SRR UPE U, DU T N S S U TS T JURGE SO W SPREr

T e o At A Bt S B A e v e i S e A e

LIST OF REFERENCES

l. Boehm, Barry W., "Software and Its Impact: A
Quantitative Assessment", Datamation, p. 5-16, May 1973.

2. Carlson, W. E., Druffel, L. F., Fisher, D. A., and
Whitakker, W. A., Introducing Ada, Paper presented at
the Annual Conference of the Association for Computere
Machinery, 27-29 October 1980.

v
.

S a4
LS

3. Pressman, Roger S., Software Engineering: A

Practitioner's Approach, McGraw-Hill Book Company, 1382.

4. Ross, D. T., Goodewough, J. B., and Irvine, C. A.,
"Software Engineering: Process, Principles and Goals",
Computer, p. 54-64, May 1975.

Stevens, W. P., Myers, 3. J., and Constantine, L. L.,
1 "Structured Design", IBM Systems Journal, v. 13, No. 2,
= p. 115-138, 1974.

SRR © § SRTNCRONIHER
(9]

% 6. Yourdon, E., and Constantine, L., Structured Design:
: Fundamentals of a Discipline of Computer Program and
System Design, Prentice~Hall, 1979.

7. Parnas, D., "On the Criteria to be Used in Decomposing
Systems into Modules", Communications of the ACM, v. 15,
No. 12, p. 220-225, Decembezr, 1972.

8. Booch, G., Software Engineering with Ada,
Benjamin/Cummings Publishing Company, 1983.

9. Wegner, P. W., The Ada Prograggig%-Lagggggg and
Environment, Unpublished Report, 6 June 198T

10. Softech, Inc., Ada Programming Design Language Survey,
by L. Lindley and R. Sheffield, October 1982.

1l1. Caine, S. and Gordon, E., PDL--A Tool for Software
Design, Proceedings, National Computer Conference, 1975.

12. Basili, V., and Others, "Monitoring an Ada Software
Development"”, Office of Naval Research Newsletter, v. 1,
No. 2, December 1982.

s Gk

13. Wegner, P. W., "Ada Education and Technology Transfer
Activities", Ada Letters, v. 2, No. 2, 1982,

4 ;P‘IJ“-L‘

lo8

RV Y iy Y e 3

Lol el e o ol e

with the Ada

«

\ -

_j!"- it i i —
1982,

109

DAY LI LE e

Programming Concepts
Incl '

Petrocalli Books,

. & .l

L] .)

¥ 0

..., R

1 R

" £ IF »

' o 9l y

L =

hy s “ a
Q !

L I !

a “u

4 ey 3

14.

iR . .
Be . lr AN b NN .

IPEP Sy W W) RN A EN N R R Y

‘‘‘‘‘‘‘‘‘
»»»»»»»»»»»

. INITIAL DISTRIBUTION LIST

No. Copies

l. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

o 2. Library, Code 0142 2
: Naval Postgraduate School
R Monterey, California 93940

[

. 3. Department Chairman, Code 54
Department of Administrative Science
Naval Postgraduate School

Monterey, California 93940

T

et b

\ CpCah)
L Y

A+ 44

4. LCDR George J. Wylie, USN 1
Patrol Squadron Nineteen
PPO San Francisco, CA 96601

e Moe o St L at
OO A

r_l

5. LT Thomas R. Watt, USN
Commander Amphibious Sguadron Eight
FPO New York, NY 09501

6. LCDR Ronald Modes, USN, Code 52MF 2

Department of Computer Science
Naval Postgraduate School

Monterey, California 93940

7. LCDR John R. Hayes, SC, USN, Code 54HT 1
Department of Administrative Science
Naval Postgraduate School
Monterey, California 93940

oy o aa

Naval Postgraduate School

Computer Technologies Curricular Office
Code 37

Monterey, California 93940

L L
@
L]
'—J

-

RPORITIT) R,

ey
-0

Sl - B R
e ki

2 .
rd i

-—a
Ak

110

| oo s s . . .
PSP A B L s St
L L ey e Q i

B e e YT AR B s i 2
| AR & B L SR 0
0

)
|
|
)
)
§

----- D ol ot & —UNSSUPRIT TER0, SO TNEY U VO WY ST GO, N SR G Sl P, S L %

T T ———————

[——

3

y TS m&

